
PHYS 234: Quantum Physics 1 (Fall 2008)
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1. A time dependent two level system
An atom that can exist in one of two energy states (or levels) can be described similar to the spin of
a silver atom. The two orthonormal basis states for the atom are the ground state (lowest energy),∣∣ g

〉
, and the excited state

∣∣ e
〉
. In the following we consider the interaction between a two-level atom

and a light field which can change the energy of the atom and move it between the two states. In the
so-called rotating wave approximation, the Hamiltonian of the two-level system is given by

H = h̄ωg

∣∣g〉〈
g
∣∣ + h̄ωe

∣∣e〉〈e∣∣− h̄ΩR(exp{−iνt}∣∣g〉〈
e
∣∣ + exp{iνt}∣∣e〉〈g∣∣)

The first two terms describe the dynamics of the two-level atom in the absence of the light field,
whereas the interaction between the two is encoded in the last two terms. In the following we param-
eterise the state of the two-level system by

∣∣ ψ(t)
〉

= Cg(t)
∣∣ g

〉
+ Ce(t)

∣∣ e
〉

and only consider the case where the frequency of the light field is resonant with the atom:

ωg − ωe = ν

(a) Express the Hamiltonian in co-ordinate representation with respect to the basis states
∣∣ g

〉
and∣∣ e

〉

solution

Ĥ =
(〈

g
∣∣H∣∣ g

〉 〈
g

∣∣H∣∣ e
〉

〈
e
∣∣H

∣∣ g
〉 〈

e
∣∣H

∣∣ e
〉
)

=
(

h̄ωg h̄ΩR exp{−iνt}
h̄ΩR(exp{iνt} h̄ωe

)

(b) Use the Schroedinger equation (for probability amplitudes) to obtain the coupled differential
equations that govern the time dependence of the coefficients Cg(t) and Ce(t).

solution The Schroedinger equation in question reads

ih̄
∂

∂t
~ψ(t) = Ĥ ~ψ(t)

where ~ψ(x, t) is the column vector of probability amplitudes in this discrete case (in the case
of continuous eigenvectors (e.g. position), the column vector becomes a function – the wave
function).
The state ket presented in the question leads to the following vector of probability amplitudes
in the ordered basis (

∣∣ g
〉
,
∣∣ e

〉
)

∣∣ ψ(t)
〉

= Cg(t)
∣∣ g

〉
+ Ce(t)

∣∣ e
〉 ⇒ ~ψ(t) =

(
Cg(t)
Ce(t)

)

This, combined with the Schroedinger equation above, leads to the coupled differential equa-
tions

Ċg = −iωgCg + iΩR exp{−iνt}Ce (1)

Ċe = −iωeCe + iΩR exp{iνt}Cg (2)
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(c) To solve these differential equations it is useful to consider the so-called interaction picture,
where the functions Cg(t) and Ce(t) are given by

Cg(t) = Dg(t) exp{−iωgt}, Ce(t) = De(t) exp{−iωet}

By considering the time derivative of the above expressions, form a new set of coupled equations
for Dg(t) and De(t). This formalism is used to eliminate the first two parts of the Hamiltonian
which only describe the dynamics of the two-level system. What is left concerns the interaction
between the atom and the light field.

solution

Ċg = −iωDg(t) exp{−iωgt}+ Ḋg(t) exp{−iωgt}
= −iωgCg + Ḋg(t) exp{−iωgt}

equate to (1) ⇒ Ḋg(t) exp{−iωgt} = iΩR exp{−iνt}Ce

= iΩR exp{−iνt}De(t) exp{−iωet}
Ḋg(t) = iΩR exp{−iνt}De(t) exp{−i(ωe + ωg)t}
Ḋg(t) = iΩRDe(t)

Similarly

Ḋe(t) = iΩRDg(t)

(d) Solve the resulting coupled differential equations and use the initial conditions Dg(0) and De(0)
to fix any arbitrary constants.

solution The differential equations can be decoupled by defining D± = Dg ± De, which leads to the
following differential equations

Ḋ+ = iΩRD+ and Ḋ− = −iΩRD−

Solving these two equations with initial conditions given in the question gives

Dg(t) = Dg(0) cos(ΩRt) + iDe(0) sin(ΩRt)
De(t) = iDg(0) sin(ΩRt) + De(0) cos(ΩRt)

(e) Compute the probability to find the atom in the ground state, given by |〈g∣∣ψ〉|2, for the case
that the atom was initially in the excited state,

∣∣ ψ(0)
〉

=
∣∣ e

〉

solution The initial state has Cg(0) = 0 and Ce(0) = 1, which converts to Dg(0) = 0 and De(0) = 1.
The probability that the atom is in the ground state

Prob
(∣∣ g

〉)
= |Dg(t)|2 = sin2(ΩRt)

2
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2. Wave functions
A particle of mass m is in the state

Ψ(x, t) = A exp{−a[(mx2/h̄) + it]}

where A and a are positive real constants

(a) Find A

solution A is found by ensuring that the wave function is normalised in the sense that the probability
density equals unity when integrated over all x

1 = |A|2
∫ +∞

−∞
exp{−2amx2/h̄}dx = |A|2

√
π

2am/h̄
⇒ A =

(
2am

πh̄

)1/4

(b) Since the total energy is the sum of kinetic and potential energies, the Hamiltonian operator is
written as

H =
P 2

2m
+ V (X) = − h̄2

2m

∂2

∂x2
+ V (x)

For what potential energy function V (x) does Ψ satisfy the Schroedinger equation?

solution

∂Ψ
∂t

= −iaΨ;
∂Ψ
∂x

= −2amx

h̄
Ψ;

∂2Ψ
∂x2

= −2am

h̄

(
Ψ + x

∂Ψ
∂x

)
= −2am

h̄

(
1− 2amx2

h̄

)
Ψ

Put these into the Schroedinger Equation: ih̄∂Ψ
∂t = −hbar2

2m
∂2Ψ
∂x2 + V (x)Ψ:

V (x)Ψ = ih̄(−ia)Ψ +
−hbar2

2m

(
−2am

h̄

)(
1− 2amx2

h̄

)
Ψ

=
[
h̄a− h̄a

(
1− 2amx2

h̄

)]
Ψ = 2a2mx2Ψ ⇒ V (x) = 2ma2x2

This is the potential associated with the harmonic oscillator, V (x) ∼ x2, e.g. for a mass-spring
system, Potential Energy = 1/2kx2

(c) Calculate the expectation values for the first and second moments of position and momentum,
< x >, < x2 >, < p > and < p2 >

solution

< x >=
∫ +∞

−∞
dxx|Ψ|2 = 0

Particle is equally likely to be on the −x as the +x side of the potential that is symmetric about
x = 0

< x2 >=
∫ +∞

−∞
dxx2|Ψ|2 = |A|2 1

2(2am/h̄)

√
πh̄

2am
=

h̄

4am

< p >=
∫ +∞

−∞
dxΨ∗(−ih̄)

∂

∂x
Ψ = 0

3
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Derivative evaluated in part (b), so integral is same as for < x >. Particle is equally likely to be
moving in direction of positive x as negative x.

< p2 > =
∫ +∞

−∞
dxΨ∗(−ih̄)2

∂2

∂x2
Ψ

= 2amh

[∫ +∞

−∞
dx|Ψ|2 − 2am

h̄

∫ +∞

−∞
dxx2|Ψ|2

]

= 2amh̄

(
1− 2am

h̄
< x2 >

)
= amh̄

(d) Find the variances in position and momentum, ∆x and ∆p. Is their product consistent with the
Heisenberg uncertainty principle?

solution

∆X =
√

< X2 > − < X >2 =

√
h̄

4am
∆P =

√
< P 2 > − < P >2 =

√
amh̄

Consequently the product of these uncertainties is

∆X∆P =

√
h̄

4am

√
amh̄ =

h̄

2

Which is the equality limit of the Heisenberg Uncertainty principle. Note that the Wave function
is a gaussian wave-packet.

3. Heisenberg Uncertainty Principle
In this question you will use the Heisenberg uncertainty principle to estimate certain parameters. The
values obtained stem purely from quantum physics and have no classical analogue.

(a) Consider an electron whose position is is somewhere inside an atom of diameter 1 Å. What
is the uncertainty in the electron’s momentum? Is this consistent with the binding energy of
electrons in atoms. [To make the comparison, assume the electron has an momentum equal to
its minimum uncertainty]

solution Set ∆X = 10−10 m

P ∼ ∆P =
h̄

2∆X

E =
P 2

2m
=

(
h̄

2∆X

)2 1
2m

= 0.95 eV

Atomic binding energies are typically on the order of a few electron volts, so this result is
consistent with finding electrons inside atoms.

(b) Imagine an electron to be somewhere in a nucleus of diameter 10−12 cm. What is the uncertainty
in the electron’s momentum? Is the resulting energy consistent with binding energy of nuclear
constituents and therefore would you expect the electron to escape the nucleus. [The conversion
from momentum to energy must be done relativistically in this case: E2

tot = c2p2 + m2
0c

4 and
Ekinetic = Etot −m0c

2]
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solution Set ∆X = 10−14 m

Etot =

√(
h̄c

2∆X

)2

+ m2
0c

4 = 9.88 MeV

Ekinetic = 9.88− 0.511 = 9.37 MeV

This value is close to the average binding energy per nucleon, so electrons will tend to escape
from the nuclei.

(c) Consider now a neutron or a proton to be in such a nucleus. What is the uncertainty in the neu-
tron or proton’s momentum? Is this consistent with the binding energy of nuclear constituents?
(Again, a relativistic calculation is required here).

solution The estimated momentum is the same as in part (b) since it depends only on the uncertainty in
position (∆X). However the rest energy (938 MeV) is much greater and dominates the total
energy and consequently the kinetic energy portion is much smaller

Etot =

√(
h̄c

2∆X

)2

+ m2
0c

4 = 938.052 MeV

Ekinetic = 938.052− 938 = 0.052 MeV

This is much smaller than the average binding energy per nucleon, thus the uncertainty principle
is consistent with finding these particles confined inside the nucleus.
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