## PHYS 234: Quantum Physics 1 (Fall 2008)

Assignment 6 - Solutions

1. Given a mixture of atoms where $20 \%$ are in the state $\left|\downarrow_{x}\right\rangle, 75 \%$ are in the state $\left|\uparrow_{y}\right\rangle$ and the rest are in the state $\left|\uparrow_{z}\right\rangle$, what is the statistical operator, $\rho$, for this mixture expressed as a matrix in the $z$-basis?
solution The generalised form for the statistical operator is given by the sum of products of relative weights and projector operators:

$$
\begin{aligned}
\rho & =\sum P_{i}|i\rangle\langle i| \\
& =\frac{1}{5}\left|\downarrow_{x}\right\rangle\left\langle\downarrow_{x}\right|+\frac{3}{4}\left|\uparrow_{y}\right\rangle\left\langle\uparrow_{y}\right|+\frac{1}{20}\left|\uparrow_{z}\right\rangle\left\langle\uparrow_{z}\right| \\
& =\frac{1}{5} \frac{1}{2}\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)+\frac{3}{4} \frac{1}{2}\binom{1}{i}\left(\begin{array}{ll}
1 & -i
\end{array}\right)+\frac{1}{20}\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& =\frac{1}{10}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)+\frac{3}{8}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right)+\frac{1}{20}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& =\frac{1}{40}\left(\begin{array}{cc}
21 & -4-15 i \\
-4+15 i & 19
\end{array}\right)
\end{aligned}
$$

2. The spin state of an electron is represented (in the basis formed by the eigenvectors of $\sigma_{z}$ ) by the statistical operator

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

where $a$ and $b$ are real numbers with $a \geq 0, b \geq 0$ and $a+b=1$
(a) If a $x$-Stern Gerlach measurement is made, what is the probability that the result obtained will be (a) deflected up, (b) deflected down?
solution For probability of deflected up:

$$
\begin{aligned}
\operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right) & =\operatorname{Tr}\left\{\rho\left|\uparrow_{x}\right\rangle\left\langle\uparrow_{x}\right|\right\} \\
& =\frac{1}{2} \operatorname{Tr}\left\{\left(\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\} \\
& =\frac{1}{2} \operatorname{Tr}\left\{\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right)\right\}=\frac{1}{2}(a+b)=\frac{1}{2}
\end{aligned}
$$

For probability of deflected down:

$$
\begin{aligned}
\operatorname{Prob}\left(\left|\downarrow_{x}\right\rangle\right) & =\operatorname{Tr}\left\{\rho\left|\downarrow_{x}\right\rangle\left\langle\downarrow_{x}\right|\right\} \\
& =\frac{1}{2} \operatorname{Tr}\left\{\left(\begin{array}{cc}
a & 0 \\
b & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\right\} \\
& =\frac{1}{2} \operatorname{Tr}\left\{\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right)\right\}=\frac{1}{2}(a+b)=\frac{1}{2}
\end{aligned}
$$

(b) Use these probabilities to compute the expectation value for this measurement.

## solution

$$
<\sigma_{x}>=(+1) \operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right)+(-1) \operatorname{Prob}\left(\left|\downarrow_{x}\right\rangle\right)=\frac{1}{2}-\frac{1}{2}=0
$$

(c) Check that the result for (b) agrees with that calculated directly using the statistical operator formalism given by

$$
<\sigma_{x}>=\operatorname{Tr}\left\{\sigma_{x} \rho\right\}
$$

solution

$$
<\sigma_{x}>=\operatorname{Tr}\left\{\sigma_{x} \rho\right\}=\operatorname{Tr}\left\{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\right\}=\operatorname{Tr}\left\{\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)\right\}=0
$$

3. Suppose a source emits silver atoms which are sent through three different types of Stern-Gerlach devices, each of them measuring with magnetic field gradients along the $x, y$ and $z$ axis. When the $z$ or $y$ measurements are performed, the probability that an atom is deflected up is $3 / 8$, while for the $x$-SG experiment the probability that an atom is deflected up is $3 / 4$.
(a) What is the density operator (statistical operator) for this source?
solution In this case the information provided must be converted to a Bloch vector and used to construct the statistical operator:

$$
\begin{aligned}
<\sigma_{x}> & =(+1) \operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right)+(-1) \operatorname{Prob}\left(\left|\downarrow_{x}\right\rangle\right)=\operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right)-\left(1-\operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right)\right) \\
& =2 \operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right)-1=2(3 / 4)-1=1 / 2 \\
<\sigma_{y}> & =2 \operatorname{Prob}\left(\left|\uparrow_{y}\right\rangle\right)-1=2(3 / 8)-1=-1 / 4 \\
<\sigma_{z}> & =2 \operatorname{Prob}\left(\left|\uparrow_{z}\right\rangle\right)-1=2(3 / 8)-1=-1 / 4
\end{aligned}
$$

Hence the Bloch vector is $\vec{s}=\left(<\sigma_{x}>,<\sigma_{y}>,<\sigma_{z}>\right)^{T}=(1 / 2,-1 / 4,-1 / 4)^{T}$, and the corresponding statistical operator is given by:

$$
\rho=1 / 2(\mathbb{1}+\vec{s} \cdot \vec{\sigma})=\frac{1}{8}\left(\begin{array}{cc}
3 & 2+i \\
2-1 & 5
\end{array}\right)
$$

(b) Write down the measurement operator $\sigma_{n}=\vec{n} . \vec{\sigma}$ for a Stern Gerlach apparatus that measures along an axis rotated by $+45^{\circ}$ in the $x y$-plane.
solution The unit vector that defines the direction of measurement is

$$
\vec{n}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Hence the measurement is described by the operator $\sigma_{n}=\vec{n} . \vec{\sigma}$, which is:

$$
\sigma_{n}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1-i \\
1+i & 0
\end{array}\right)
$$

(c) Compute the expectation value, $\left\langle\sigma_{n}\right\rangle$.
solution The expectation value is given by:

$$
\begin{aligned}
<\sigma_{n}> & =\operatorname{Tr}\left\{\rho \sigma_{n}\right\}=\operatorname{Tr}\left\{\begin{array}{cc}
\left.\frac{1}{8}\left(\begin{array}{cc}
3 & 2+i \\
2-1 & 5
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1-i \\
1+i & 0
\end{array}\right)\right\} \\
& =\frac{1}{8 \sqrt{2}} \operatorname{Tr}\left\{\left(\begin{array}{cc}
1+3 i & 3-3 i \\
5+5 i & 1-3 i
\end{array}\right)\right\}=\frac{1}{4 \sqrt{2}}
\end{array}\right.
\end{aligned}
$$

Note that a very simple alternative result that we derived in class is that $<\sigma_{n}>=\vec{n} \cdot \vec{s}$
(d) What is the probability that atoms are deflected up in this experiment?

## solution

$$
<\sigma_{n}>=(+1) \operatorname{Prob}\left(\left|\uparrow_{n}\right\rangle\right)+(-1) \operatorname{Prob}\left(\left|\downarrow_{n}\right\rangle\right)=2 \operatorname{Prob}\left(\left|\uparrow_{n}\right\rangle\right)-1=\frac{1}{4 \sqrt{2}}
$$

Hence

$$
\operatorname{Prob}\left(\left|\uparrow_{n}\right\rangle=\frac{1}{2}\left(\frac{1}{4 \sqrt{2}}+1\right)\right.
$$

