PHYS 234: Quantum Physics 1 (Fall 2008) Assignment 5

Due: 12.00 pm , October 17, 2008

1. Consider source atoms for a Stern Gerlach measurement which are in the state described by

$$
\left\rangle=\frac{1}{\sqrt{6}}\binom{1+i}{2}\right.
$$

(a) Calculate the respective probabilities for the atoms to be deflected up and down in a z-SG experiment.
solution For this state, the coefficients of $\left|\uparrow_{z}\right\rangle$ and $\left|\downarrow_{z}\right\rangle$ are easy to pick off:

$$
\begin{gathered}
\alpha=\frac{1+i}{\sqrt{6}} \Rightarrow \operatorname{Prob}\left(\left|\uparrow_{z}\right\rangle\right)=|\alpha|^{2}=1 / 3 \\
\beta=\frac{2}{\sqrt{6}} \Rightarrow \operatorname{Prob}\left(\left|\downarrow_{z}\right\rangle\right)=|\alpha|^{2}=2 / 3
\end{gathered}
$$

(b) Calculate the respective probabilities for the atoms to be deflected up and down in an x-SG experiment.
solution Decompose into $\left|\uparrow_{x}\right\rangle$ and $\left|\downarrow_{x}\right\rangle$

$$
\left.\rangle=| \uparrow_{x}\right\rangle \gamma+\left|\downarrow_{x}\right\rangle \delta
$$

The coefficients and probabilities are then:

$$
\begin{gathered}
\gamma=\left\langle\uparrow_{x} \mid\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \frac{1}{\sqrt{6}}\binom{1+i}{2}=\Rightarrow \operatorname{Prob}\left(\left|\uparrow_{x}\right\rangle\right)=|\gamma|^{2}=5 / 6 \\
\delta=\left\langle\downarrow_{x} \mid\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1
\end{array}\right) \frac{1}{\sqrt{6}}\binom{1+i}{2}=\Rightarrow \operatorname{Prob}\left(\left|\downarrow_{x}\right\rangle\right)=|\delta|^{2}=1 / 6
\end{gathered}
$$

(c) Using the operator σ_{z} or otherwise, calculate the expectation value for the z-SG experiment.
solution

$$
\left\langle\sigma_{z}\right\rangle=\langle | \sigma_{z}| \rangle=\frac{1}{\sqrt{6}}\left(\begin{array}{ll}
1+i & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1+i}{2}=-1 / 3
$$

(d) Using the operator σ_{x} or otherwise, calculate the expectation value for the x-SG experiment.
solution

$$
<\sigma_{x}>=\langle | \sigma_{x}| \rangle=\frac{1}{\sqrt{6}}\left(\begin{array}{ll}
1+i & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1+i}{2}=2 / 3
$$

2. An electron is in the spin state

$$
\left\rangle=A\binom{3 i}{4}\right.
$$

(a) Determine the normalisation constant A.
solution For the state vector to be normalised the norm must be equal to 1
(b) Find the expectation values for $\sigma_{x}, \sigma_{y}, \sigma_{z}$.

solution

$$
\begin{aligned}
& \left\langle\sigma_{x}\right\rangle=\langle | \sigma_{x}| \rangle=\frac{1}{25}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\binom{-3 i}{4}=\frac{1}{25}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{4}{3 i}=\frac{1}{25}(-12 i+12 i)=0 \\
& \left\langle\sigma_{y}\right\rangle=\langle | \sigma_{y}| \rangle=\frac{1}{25}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{-3 i}{4}=\frac{1}{25}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{-4 i}{-3}=\frac{1}{25}(-12-12)=\frac{-24}{25} \\
& \left\langle\sigma_{z}\right\rangle=\langle | \sigma_{z}| \rangle=\frac{1}{25}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{-3 i}{4}=\frac{1}{25}\left(\begin{array}{ll}
-3 i & 4
\end{array}\right)\binom{3 i}{-4}=\frac{1}{25}(9-16)=\frac{-7}{25}
\end{aligned}
$$

(c) Find the "uncertainties" $\Delta \sigma_{x}, \Delta \sigma_{y}, \Delta \sigma_{z}$, where $\Delta X^{2}=<X^{2}>-<X>{ }^{2}$
solution The operators $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\mathbb{1}$, hence the expectation values are

$$
\left\langle\sigma_{x}^{2}>=\langle | \sigma_{x}^{2} \mid\right\rangle=\langle | \mathbb{1}| \rangle=\langle\mid\rangle=1=<\sigma_{z}^{2}>=<\sigma_{y}^{2}>
$$

The uncertainty, $\Delta \sigma_{x}$, is therefore given by

$$
\Delta \sigma_{x}=\sqrt{<\sigma_{x}^{2}>-<\sigma_{x}>^{2}}=\sqrt{1-0}=1
$$

Similarly

$$
\Delta \sigma_{y}=\sqrt{1-\left(\frac{-24}{25}\right)^{2}}=\frac{7}{25}
$$

and

$$
\Delta \sigma_{z}=\sqrt{1-\left(\frac{-7}{25}\right)^{2}}=\frac{24}{25}
$$

3. Express the operator $A=\left|\uparrow_{x}\right\rangle\left\langle\uparrow_{z}\right|+\left|\downarrow_{x}\right\rangle\left\langle\downarrow_{z}\right|$ as a linear function of $\vec{\sigma}$. What is A^{2} ?
solution There is a brute-force way to approach this question where one substitutes the numeric vectors (in the z-basis), calculates the resulting matrix and then rewrites this in terms of Pauli operators.
However, the solution can be found by keeping the problem in bra-ket notation.

$$
\begin{aligned}
\left|\uparrow_{x}\right\rangle\left\langle\uparrow_{z}\right|+\left|\downarrow_{x}\right\rangle\left\langle\downarrow_{z}\right| & =\frac{1}{\sqrt{2}}\left(\left|\uparrow_{z}\right\rangle+\left|\downarrow_{z}\right\rangle\right)\left\langle\uparrow_{z}\right|+\frac{1}{\sqrt{2}}\left(\left|\uparrow_{z}\right\rangle-\left|\downarrow_{z}\right\rangle\right)\left\langle\downarrow_{z}\right| \\
& =\frac{1}{\sqrt{2}}\left(\left|\uparrow_{z}\right\rangle\left\langle\downarrow_{z}\right|+\left|\downarrow_{z}\right\rangle\left\langle\uparrow_{z}\right|+\left|\uparrow_{z}\right\rangle\left\langle\uparrow_{z}\right|-\left|\downarrow_{z}\right\rangle\left\langle\downarrow_{z}\right|\right) \\
& =\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)
\end{aligned}
$$

For the expression of σ_{x} in terms of $\left|\uparrow_{z}\right\rangle$'s see courseware notes equation (2.9.6) on page 41. For A^{2} we get

$$
\left(\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)\right)^{2}=\frac{1}{2}\left(\sigma_{x}^{2}+\sigma_{x} \sigma_{z}+\sigma_{z} \sigma_{x}+\sigma_{z}^{2}\right)=\frac{1}{2}(1+0+1)=1
$$

The important point here is that the order of the operators is maintained and the anticyclic properties of Paulis is used.
4. Suppose you have a state

$$
|\Psi\rangle=\sqrt{\frac{3}{5}}\left|\uparrow_{z}\right\rangle+\sqrt{\frac{2}{5}}\left|\downarrow_{z}\right\rangle
$$

What is expectation value for a Stern Gerlach experiment with the field gradient in the x-direction?
solution Again there is more than one approach here, and the brute-force method is certainly one option. The simplest, I think is to decompose each of the terms into " $\pm x$ atoms".

$$
\begin{aligned}
|\Psi\rangle & =\sqrt{\frac{3}{5}}\left|\uparrow_{z}\right\rangle+\sqrt{\frac{2}{5}}\left|\downarrow_{z}\right\rangle \\
& =\sqrt{\frac{3}{5}} \frac{1}{\sqrt{2}}\left(\left|\uparrow_{x}\right\rangle+\left|\downarrow_{x}\right\rangle\right)+\sqrt{\frac{2}{5}} \frac{1}{\sqrt{2}}\left(\left|\uparrow_{x}\right\rangle-\left|\downarrow_{x}\right\rangle\right) \\
& =\frac{\sqrt{3}+\sqrt{2}}{\sqrt{10}}\left|\uparrow_{x}\right\rangle+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{10}}\left|\downarrow_{x}\right\rangle
\end{aligned}
$$

Hence the respective probabilities for up and down outcomes are:

$$
\operatorname{Prob}\left(| \uparrow _ { x } \rangle = (\frac { \sqrt { 3 } + \sqrt { 2 } } { \sqrt { 1 0 } }) ^ { 2 } , \text { and } \operatorname { P r o b } \left(\left|\downarrow_{x}\right\rangle=\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{10}}\right)^{2}\right.\right.
$$

The expectation value is then the sum of the products of eigenvalues and probabilities:

$$
<\sigma_{x}>=\left(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{10}}\right)^{2}-\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{10}}\right)^{2}=\frac{2}{5} \sqrt{6}
$$

Alternatively you can compute either $\langle\Psi| \sigma_{x}|\Psi\rangle$ or $\operatorname{Tr}\left\{\sigma_{x}|\Psi\rangle\langle\Psi|\right\}$.

