PHYS 234: Quantum Physics 1 (Fall 2008)

Assignment 3 - Solutions

Issued: September 26, 2008
Due: 12.00 pm , October 3, 2008

Pauli Matrices (See sections 2.9-2.10 of Section 2 of the UW-Courseware)
Pauli operators in coordinate representation in the basis $\left|\uparrow_{z}\right\rangle,\left|\downarrow_{z}\right\rangle$:

$$
\sigma_{x} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \sigma_{y} \rightarrow\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \sigma_{z} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

1. The Pauli matrices along with the (2×2) Identity matrix form the basic building blocks for any (2×2) matrix. This can be demonstrated in the following way using an extension of vector notation.
We define a vector of (complex) scalars, $\vec{a}=\left(a_{x}, a_{y}, a_{z}\right)$ and a vector of Pauli matrices, $\vec{\sigma}=$ $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$. These can be combined in a dot product, $\vec{a} \cdot \vec{\sigma}=a_{x} \sigma_{x}+a_{y} \sigma_{y}+a_{z} \sigma_{z}$.
Using the (complex) scalar a_{0}, any (2×2) matrix, \hat{T}, may be expressed:

$$
\hat{T}=a_{0} \mathbb{1}+\vec{a} \cdot \vec{\sigma}
$$

(a) Use this result to find expressions for a_{0} and the components of \vec{a} in terms of the matrix elements, $T_{i j}$, of \hat{T}.
[Hint: Write \hat{T} in matrix form and equate it, element by element, to the expanded form of the RH-side of the equation above to give four coupled equations. Rearrange these to find $a_{0}, a_{x}, a_{y}, a_{z}$ in terms of $\left.T_{i j}.\right]$

Solution

$$
\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right)=a_{0}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+a_{x}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+a_{y}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)+a_{z}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Hence

$$
\begin{array}{ll}
T_{11}=a_{0}+a_{z}, & T_{21}=a_{x}+i a_{y} \\
T_{22}=a_{0}-a_{z}, & T_{12}=a_{x}-i a_{y}
\end{array}
$$

which can be solved to give

$$
\begin{array}{ll}
a_{0}=1 / 2\left(T_{11}+T_{22}\right), & a_{x}=1 / 2\left(T_{21}+T_{12}\right) \\
a_{z}=1 / 2\left(T_{11}-T_{22}\right), & a_{y}=-i / 2\left(T_{21}-T_{12}\right)
\end{array}
$$

(b) Use these equations to find $a_{0}, a_{x}, a_{y}, a_{z}$ for the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

solution

$$
\begin{array}{ll}
a_{0}=1 / 2(0+0)=0, & a_{x}=1 / 2(0+1)=1 / 2 \\
a_{z}=1 / 2(0+0)=0, & a_{y}=-i / 2(0-1)=i / 2
\end{array}
$$

Now check explicitly that this is equivalent to

$$
a_{0} \mathbb{1}+a_{x} \sigma_{x}+a_{y} \sigma_{y}+a_{z} \sigma_{z}
$$

solution

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\frac{i}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

2. Show explicitly that $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} \mathbb{1}$ where $i, j=x, y, z$. In other words, show that for $i=j$, $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\mathbb{1}$, while for $i \neq j$, show $\left\{\sigma_{i}, \sigma_{j}\right\}=0$, where curly brackets indicate the anticommutator: $\{\hat{A}, \hat{B}\}=\hat{A} \hat{B}+\hat{B} \hat{A}$. (You don't need to evaluate all permutations but a sufficient number to convince yourself that this statement is true)
solution In each case for $i=j$

$$
\begin{gathered}
\sigma_{x}^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\sigma_{y}^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\sigma_{z}^{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

while for $i \neq j$, for example

$$
\sigma_{x} \sigma_{z}+\sigma_{z} \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=0
$$

What you see here is first that $\left(\sigma_{x} \sigma_{z}\right)=-\left(\sigma_{z} \sigma_{x}\right)$, and if you look closely that $\left(\sigma_{x} \sigma_{z}\right)=-i \sigma_{y}$ and therefore that $\left(\sigma_{z} \sigma_{x}\right)=i \sigma_{y}$
3. Using the fundamental algebraic properties in eq (2.9.11), calculate the following expressing each as $a_{0} \mathbb{1}+\vec{a} \cdot \vec{\sigma}$
solution

$$
\begin{gathered}
{\left[\frac{1}{2}\left(\mathbb{1}+\sigma_{x}\right)\right]^{2}=\frac{1}{2}\left(\mathbb{1}+\sigma_{x}\right)} \\
{\left[\frac{1}{2}\left(\mathbb{1}-\sigma_{x}\right)\right]^{2}=\frac{1}{2}\left(\mathbb{1}-\sigma_{x}\right)} \\
\frac{1}{2}\left(\mathbb{1}+\sigma_{x}\right) \frac{1}{2}\left(\mathbb{1}-\sigma_{x}\right)=\frac{1}{2} \mathbb{1} \\
\left(i \sigma_{z}\right) \sigma_{x}\left(-i \sigma_{z}\right)=-\sigma_{x} \\
\left(i \sigma_{z}\right) \sigma_{y}\left(-i \sigma_{z}\right)=-\sigma_{y} \\
\sqrt{\frac{1}{2}}\left(\mathbb{1}+i \sigma_{z}\right) \sigma_{x} \sqrt{\frac{1}{2}}\left(\mathbb{1}-i \sigma_{z}\right)=-\sigma_{y} \\
\sqrt{\frac{1}{2}}\left(\mathbb{1}+i \sigma_{z}\right) \sigma_{y} \sqrt{\frac{1}{2}}\left(\mathbb{1}-i \sigma_{z}\right)=\sigma_{x}
\end{gathered}
$$

