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CIIAPTER 3

METALS AND SEMICONDUCTORS

IN T8 chapter we present physical “picbures’™ of the inside of o metal
ond a semiconductor, The nature of conduction in a solid and the laws
governing the emission of electrons from the surfnce of a metal are
considered. .

3-1. Free Electrons in Metals, X-ray and other studies reveal that
most metals and semiconductors are erystalline in structure. A crystal
consists of a space array of atoms or
molecules {strictly speaking, ions)
buiit up by regular repetition in three
dimensions of some fundamental
structural unit. Ina metal theouler
electrons of the atom are as much
associated with one ion as with an-
other, so that the electron attach-
ment to any individual atom is prac-
tically zero. Depending upon the
metal, at least one and sometimes
two or three electrons per atom are
free to move throughout the interior
of the metal under the action of
applied forces.

Figure 3-1 shows the charge distri-
bution within 2 metal, specifically,
sodium. The plus signs represent

A UNITS the heavy positive sodium nuclei of
F1a. 3-1. Arrangement of the sodium  the individual atoms. The heavily
atoms in one planc of the metal.  ghaded regions represent the elec-
Eg;b?hocuey’ J. Appl. Phys., 10, 543, trons in the sodium atom that are

o - tightly bound to the nucleus, "These
arc inappreciably disturbed as the atoms come together to forfn the metal.
The light shading represents the outer, or valenee, electrons in the 1-1L0m;
and it is these clectrons that cannot he said to belong to any particular
ntom. Instend, they bave completely lost their individuality and can
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wauder freely about from atom to atom in the metal. Thus o metal ig
visualized as a region containing & periodic three-dimensional array of
heavy, tightly bound ions permeated with a swarm of clectrons that may
move aboub quite freely. This picture is known as the “electron-gas’’
deseription of a metal.

3-2. Mobility and Conductivity. According to the electron-gas theory of
& metal, the electrons are in continuous motion, the direction of flight being
changed at each collision with the heavy (almost stationary) ions. The
average distance between collisions is ealled the mean free path. Since
the motion is random, then, on an average, there will be as many elcc-
trong passing through unit ares in the metal in any direction s in the
opposite direction in a given time. is zer

Let us now sece how the situation is changed if & constant electric field
of magnitude & volts per meter is applied to the metal. As a result of
this clectrostatic force the electrons would be accelerated and the velocity
would increasc indefinitely with time, were it not for the collisions with
the ions. However, at each inclastic collision with an ion an electron
loses energy, and a steady-state condition is reached where a finite value

of drift speed v is attained, This drift velocity is in the direction opposite
to that of the electric field, and its magnitude is proportional to §. Thus,

v = ub (3-1)
where p square meters per volt-second is_called the mebility of the
glectrons.

According to the above theory, o steady-state drift speed has been
superimposed upon the random therimal motion of the electrons. Such a

directed flow of clectrons constitubes a current. If the concentration of

frec electrons is n electrons per cubic meter, then the current density J
amperes per square meter is (Sec. 1-10)

where

I

o

is the conductivity of the metal. Equation (3-2} is recognized as Ohm's
law: namely, the conduction current is proportional to the applied volt-
nge.  As already mentioned, the cnergy which the electrons acquire from
the applied field is, as & result of collisions, given to the attice jons.

Hence, power is dissipated within the met e
power density (Joule heat) is given hy J& = 482 watts per eubic meter
3-3. The Energy Method of Analyzing the Motion of a Particle. A
method is considered in Chap. 1 by which the motion of charged particles
may he analyzed. It consists of the solution of Newton’s second law in
which the forees of clectrie and magnetie origin are equated Lo the product

J = ney = neps = of (3-2) "/
nep {ohm-meter)—! (3-3) '/
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of the mass and the acceleration of the particle.  Obviously, this method
is not applicable when the forces are ag complicated a8 they musl be in a
metal.  Furthermore, it is neither possible nor desirable to consider what
happens to each individual clectron.

It is nccessary, therefore, to consider an alternative approsch, This
method employs the law of the conservation of energy, use being made of
the potentinl-cnergy curve corresponding to the field of force. The prin-
ciples involved may best be understood by considering specific examples
of the method,

Erample. An idenlized diode consists of plane-parailel electrodes, 5 em apart.
The anode A is maintnined 10 volts negative with respect to the cathode K. An olec-
Lron leaves the cathode with an initinl cnergy of 2ev.  What is the maximum distance
it ean travel from the cathode?
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Fia. 3-2. Hlustration of the petential-energy barrier encountered by an clectron in &
retarding ficld.

Solution. This problem will be nnalyzed by the energy method. Tigure 3-2a iz a
lincar plot of polential vs. distance, and in Fig. 3-2b is indicated the corresponding
potenlinl encrgy va. distance.  Since potonticl is the potential energy per unit charge
{Bee. 1-4), curve & is obtained fremn curve a by multiplying each ordinate Ly the charge
on the cleetron (n negative number).  Sinco the total energy IV of the electton remnins
constunk, it iz represented aa n horizonlal ling.  The kinclie energy rt any distance z
cquals Lhe difference belween the total encrgy W and the potentinl energy U at this
paink.  This difference Is greatest st 0, indicnting that the kinetic energy is n maxi-
mum when the cleclron leaves the enthode. At the point P this difference is zoro,
which imeans that no kinetic energy existe, so that the particle is at rest at thia point.
"This dislnnee, 7o, is the maximum that the clectron can lravel from the enthode. A
point I” it comes momentarily Lo rest and then reverses its motion and returns to the
eathode.  From geometry it is seen that zo/b = 1% or o = 1 cm.

Consider a point such ns S which is at o greater distance than 1 em from the cathode,
Tere the total cnergy QS is less than the potential encrgy IUS, 50 that the difference,
which represents the kinelie encrgy, is negative. Thisisan impossible physical comdi-
tion, however, since negalive kinclie energy (me? < 0) implics an imaginary velocily.
We must conclude that Lhe parlicle can never ndvance n distance grenter thnn O
from the enthode,

- The foregoing annlysis lends 1o the very imporiant conclusion that the shnded por-
tion of Mg, 3-26 enn never he penctraled by the eleetron.  Thus, at point I the particle
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acta as if it had collided with a solid wall, hill, or barrier and the direction of its flight

it been aliered,  Potential encrgy barriers of this sort will play important roles in the
annlyres Lo follow.

IL muat he emphnsized that the words “collides with” or “rebounds from™ a poten-

tinl “hill" are convenient descriptive phrnses and that an netunl encounter belween
two materinl bodies is not implied.

As a second illustration, consider o mathematical pendulum of length I,
consisting of a “point” bob of mass m that is free to swing in the carth’s
gravitational field. If the lowest point of the swing (point 0, llig, 3-3) is
chosen as the origin, then the potentia! cnergy of the mass at any point P
corresponding to any angle @ of the swing is given by

U = mgy = mgl(l — cos 6) (3-4)

where g is the acecleration of gravity. This potential-energy function is
illustrated graphically in Fig. 3-4.
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Fra. 3-3. Point P repre- F1a. 3-4. The potential encrgy of the

sents the mass m of n bob in Fig. 3-3 ploited ns & function of
mathematical pendulum the angle of awing,

swinging in the earth's
gravitalional field.

Consider the resultant motion of the bob i
encrgy Uy by raising it through an angle 8,
initinl veloeity. If dissipation is neglected, tl
and forth through the angle 28e, going from #, on one side Lo 0o on the
other side of the vertical axis. How might we analyze the motion of the
physieal system il only the potential-cnergy field of Fig. 3-4 were given
without specifying the physical character of the system?

The procedure is the same as that § ollowed in the simple diode problem
considered above. A horizontal line acbe is drawn at a height equal {o the
.total cnergy Wy of the particle. At any point, such as e, the total energy
18 represented by eg = W\, and the potential energy is represented by fg.
The difference between thesc two, namely, ¢f, represents the kinetic
energy of the particle when the angle of swing, given by the intercept
of eg on the axis, corresponds to Og. In other words, the difference
between the total-energy line and the potential-energy curve at any angle
represents the kinetic energy of the particle under these conditions. This

f it is given a potential
and releasing it with zero
1¢ particle will swing back
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difference is greatest at 0, indicating that the kinelic energy is o maxi-
mum at the bottom of the swing, an alnost evident result., At the
points @ and b this difference i1s zero. This condition means that no
kinetic energy cxists, or that the particle is at rest at these points,
"This result is evident, since corresponding to the points @ (0 = 0,) and
b (¢ = —48,), the particie is about to reverse its motion.

Consider a point in the shaded region outside the range — 8, to 10,
such as h. Here the total energy ch is less than the potential energy dh.
This impossible condition is interpreted by our previeus reasoning to
mean that the particle whose total energy is 1, can never swing to the
angle Ok, so that the motion must be confined to the region ab. The
shaded portions of Tig. 3-4 represent the potential barrier which can
never be penetrated by the bob, i its total energy is no greater than W,
This type of constrained motion about a point O is closcly nnalogous to
that of the so-called “bound” clectrons in 8 metal, as will be seen later.

Now consider the case when the bob has & total energy equal to W,
which is greater than the maximum of the potentinl-energy curve.
Clearly from Tig. 3-4 tho horizontel line corresponding to this cnergy
cannot intersect the curve at any point. Consequently, the particle does
not “collide”” with the potential barrier, and its course is never nltered,
so that it moves through an ever-increasing angle.  Of course, its kinetic
energy varies over wide limits, being maximum for ¢ = 0, 2x, 4r, . . .
and minimum for # = x, 3x, 5v, . . . . Physically, this type of motion
results when the bob has enough energy to set it spinning completely
around in a circular path. This type of motion is somewhat analogous
to that experienced by the so-called “free” electrons in a metal.

This simple but powerful energy method facilitates the discussion of
the motion of a particle in a conservative field of force, such as that
found in the body of & metal. It will alse be applied to many other
types of problem. For example, the method of analysis juat considered
is extremely usclul in determining whether electrons will posscss suf-
ficient energy to pass through grids and reach the various electrodes in a
vacuum tube, whether or not electrons or ions will be able to pencirate
clectron clouds in & vacuum tube or ion sheaths in a gascous-discharge
tube, and whether charge carriers can cross a semiconductor junction.
This method will now be applied to the analysis of the motion of elec-
trons in metals.

3-4. The Potential-energy Field in a Metal. It is desired to set up the
potential-energy field for the three-dimensional array of atoms that exists
in the interior of a metal and to discuss the motion of clectrons in this field.
"The resultant potential encrgy at any point in the metal is simply the sum
of the potential energies produced at this point by all the ions of the
lattice. To determine the potentinl energy due to oneion, it is noted that
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an atom of atomic number Z has a net positive charge Ze on its nucleus.
Burrounding this nucleus is an approximately spherical cloud, or shell, of
Z clectrons. By Gauss's law the potential at g point at a distance r from
the nucleus varies inversely as r and directly as the total charge enclosed
within a sphere of radius .  Since the potential V equals the potential
energy U per unit charge (Sec. 1-4), then U = —eV. The minus sign is
introduced since e represents the magnitude of the (negative) electronic
charge.

The potential of any point may be chosen as the zero reference of
potential beeause it is only differences of potential that have any physi-
cal significance. Ior the present discussion it is convenient to choose
zero potential at infinity, and then the potential energy at any point is
negative. Inough has been said to make plausible the potential-energy
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Fra. 3-5. Tho potential cﬁcrgy of
an clectron ns a function of radial
distance from an isolated nucleus.

TFra. 3-6. The polentinl energy
resulting from two nuclei x and g,

curve illustrated in Fig, 3-5. Tere o represents a nucleus, the potential
energy of which is given by the curve ajas. The vertical scale repre-
sents U, and the horizontal scale gives the distance 7 from the nueleus.
It must be emphasized that r represents a radijal distance from the nucleus
and hence can be taken in any direction. If the direction is horizontal
but to the left of the nucleus, then the dashed curve represents the
potential energy.

"To represent the potential energy at every point in space requires a
four-dimensional picture, three dimensions for the three space coordinates

and a fourth for the potential-encrgy axis. This difficulty is avoided hy

p:nl.bing U along some chosen line through the crystal, say through & row
of iong, If

rom this graph and the method by which it is constructed it is
easy to visualize what the potential cnergy at any other point might be.
In order to build up this picture, consider first two adjacent ions, and
neglect all others. "The construction is shown in Tig. 3-6. ayozis the U
curve for nucleus o, and 8,8, is the corresponding U curve for the adjacent
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nucleus 8. If these were the only nuclei present in the metal, the result-
anb U curve in the region between « and 8 would be the sum of these two
curves, as shown by the dashed curve ayv8, (sincec ad = ab + as). Itis
seen that the resultant curve is very nearly tho same as the original curves
in the immediate vieinity of & nuecleus, but it is lower and flatter than
either individual eurve in the region between the nuclei.

Let us now single vut an entire row of nuclei @, 8, v, 5, ¢, . . . from the
metallic lattice (Tigs. 3-1 and 3-7) and sketch the potential energy as
we proceed along this line from one nucleus to the obther, until the surface
of the metnl is reached. Following the same type of construction as
above, but considering the influence of other nearby nuclei, an encrgy
distribution somewhat as illustrated in Yig. 3-7 is obtained.

According to classical clectrosbatics, which does not toke the atomie
structure into mecount, the interior of u metal is an equipotential region.

U

Tig. 3-7. "The potentinl-cnergy distribution within and at the surface of a metal,

The present, more aceurate, picture shows that the potential energy varies
appreciably in the immediate neighborhoods of the nuclei and actually
tends to — o in these regions.  Iowever, the potential is approximately
constant for the greatest volume of the metal, as indicated by the slowly
varying portions of the disgram in the regions between the jons.

Consider the conditions that exist near the surface of the metal. It is
cvident, according to the present point of view, that the exact position of
the “surface” cannot be defined. It is located at a small distance from
the lnst nucleus e in the row. It is to be noted that, since no nuclei exist
to the right of ¢, there can be no lowering and flattening of the potential-
energy curve such as prevails in the region between the nuclei. This
leads to & most important conclusion, riz.: A polential-energy “hill,” or
Mbarrier,” exists al the surface of the metal.

3-b. Bound and Free Electrons. The motion of an electron in the
polentinl-cnergy field of Fig. 3-7 will now be discussed by the method
given in See. 3-3.  Consider an electron in the metal that possesses n tolal

energy corresponding to the fevel A in Fig, 3-7.  This clectron collides -

with, and rebounds from, the potential walls at @ and b, It cannot drift
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very far from the nucleus but can move about only in the neighborhood ab
of the nucleus.  Obviously this clectron is strongly hound to the nucleus
and 8o is called a bound electron. It is evident that these bound electrons
contribute very little to the conductivity of the metal since they cannot
drift in the metal, even under the stimulus of an externally applied clce-
tric ficld. These electrons are responsiblo for the heavy shading in the
neighborhood of the nuclei of Iig, 3-1.

Our present interest is in the free, or conduction, electrons in the metal
rather than in the bound ones. A free electron is one having an energy
corresponding to the level B of the fipure. At no point within the metal
is ils _total encrgy entirely converted into potential encrgy. Ience, at
no point is ils velocity zero, and the clectron travels more or Joss froely
throughout the body of the metal. Ilowever, when the eloctron resches
the surface of the metal, it collides with the potential-energy barrier there.
At the point C, its kinetic energy is reduced to zero, and the clectron is
turned back into the body of the metal.  An clectron having an encrgy
corresponding to the level D collides with no potential walls, not even the
one at the surface, and so it is capable of leaving the metal.

In our subsequent discussions the bound clectrons will be neglected
completely since they in no way contribute to the phenomena to be
studied. Attention will be focused on the Energy
free electrons. The region in which they | te-v)

Quiside of metol
find_themselves is essentially a potential
plateau, or equipotential region. It is only
for distances close to an ion that there is any. Ly
_appreciable_varistion in potential. Since
the regions of rapidly varying potential X Jero level

represent but a very small portion of the I 3-8 For the froe clectrons,

the interior of a metal may be
total volume of the metal, we shall hence- considered an oquipotcntinlyvol-

forth assume that the ficld distribution ume, but there is n potentinl

within the metal is equipotential and the P™Her at the surface.

free eleclrons are subject to no forces whatsoever,

point is thercfore essentially that of classical clectrost
Figure 3-7 is redrawn in Fig, 3-8, all potentinl*

metal being omitted, with the exception of the po
surface.

The present view-
alics.

variations within the
tential barrier at the
For the present discussion, the zero of energy is chosen a4 the
level of the plateau of this diagram. This choice of the ZEro-encrgy

* This figure renlly represenis potential energy and not potential.
phrase ““potentinl barrier” is much more common in the titerature th
*potentini-energy barrier.”  Where no confusion ig likely to arise,
sions will be used interchangeably. These barriers will be measured in cloetron volts,

and hence the symbol B will replace the U/ of the preceding scctions. It must b
emphasized thal ong unit of £ represents 1,60 X 10710

However, the
na the phrase
these two expres-

oule of cnergy.
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reference level is valid since, as has already been emphasized, only differ-
ence of potentinl has physical signilicance. The region outside the metal
is_now at & potentinl equal to Ep, the height of the potentinl-cnergy
barrier in electron volts.

3-8. Energy Distribution of Electrons. In order to be able to escape,
an electron inside the metal must possess an amount of energy at least as
great as that represented by the surface barrier Eg. It is therefore
important to know what enerpies are possessed by the slecirons in o
metal. This relationship is ealled the enerqy distribution function. We
shall digress briefly in order to make clear what is mcant by a distribution
function.

Suppose that we were interested in the distribution in age of the people
in the United States. A sensible way to indicate this relationship is

3
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Fm.‘3-9. The distribution function in age of the people in the United States.
shown in Tig. 3-9, where the abscissa is age and the ordinate is p4, the
density of the population in age. This density gives the number dN 4 of
people whose ages lie in the range between A and A + dA, or

dN4s = padA (3-5)
"The data for such a plot are obtained from census information. We see,
for exnmple, that the number of persons having ages between 10 and 12
years js represented by dN4, with pa = 2.25 million per year chosen as
the mean ordinate between 10 and 12 years, and d A is taken as 12 — 10 =
2 years. Thus N4 = pydA = 4.50 million. Geometrically, thisis the
shaded area of Fig. 3-0. Tvidently, the total population N is given by

N =[dNi= [padA (3-6)
or simply the total aren under the curve.

We shall now be councerned with the distribution in energy of the free
electrons in a metal. By analogy with Eq. (3-5), we may write

dNg = PE dr (3-7)
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where dN g represents the number of free electrons per eubic meter whose
energies lic in the encrgy interval dF clectron volts and where pg gives
the density of electrons in this interval. The question that immediately
presents itsell is: What is the mathematical expression for the density
function pg? TFermi,' and independently Dirae,? taking into account the
quantum nature of the electron, other physical facts, and the laws of
probability, deduced this most probable distribution function® for elec-
trons. The application of this statistics to the theory of metals is due
primarily to Sommerfeld. The Fermi-Dirac-Sommerfeld energy density
function may be expressed in the form

I
PR = m'—{m (electrons/m?) fev
where v is a constant defined by (3-8)

= % {2me) (electrons/m?) /(ev)?

and where m i3 the mass of the electron in kilograms, h is a constant (its
dimensions are joule-seconds) first introduced by Planck, ¢ is the base of
natural logarithms, F is the encrgy of the electron in electron volts, By is
a parameter $o be discussed later, and Fr is defined by the relationship

eBr = kT (3-9)

where k is the Boltzmann gas constant in joules per degree Xelvin, T is
the temperature in degrees absolute or XKelvin, and e is the electronic
charge in coulombs, The quantity Jr is called the electron-voll equivalent

of temperaturet and is a convenient abbreviation. The numoerical values

of the physical constants introduced here sre contained in Appendix L

Equation (3-9) becomes, upon substituting numerical values for the con-
stants contained in the equation,

T
Er = 11,600 (3-10)

Thig permits a rapid conversion from temperature to the electron-volt
equivalent,

Several points must be emphasizcd before discussing Tq. (3-8). Since
our interests are confined only to the free electrons, it will be assumed that
there are no potential varistions within the metal. Hence, there must be,
a priori, the same number of elcctrons in each cubic meter of the metal.
That is, the density in space (electrons per cubic meter) is a constant.
However, within each unit volume of metal there will be clectrons having

- all possible energies. It is this distribution in energy (per cubic meter of

the metal) that is expressed by Bq. (3-8).
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At o temperature of absolute zero, Iig, (3-8) ntlning o very striking

form known as the complelely degenerale funclion. When T' = 0°IK, then
Er = 0, and two possible conditions exist: (1) If E > Eu, then the
exponential term beeomes infinite, whence pg = 0. Consequently, there
are no elecirons with energics grealer than Fx at absolule zero of lemperalure.
That is, s is the mazximum encrgy that any electron may possess at

absolute zero. . This irnporbant quantity Eu_ig often referred to as the
“Fermi characteristic energy' or the “TFermi level.” (2) If B < Iy,
then the exponential in Eq. (3-8) becomes zero. Hence
= i} for If < By
pPE = 0 for I > Eu

when ¥r = 0 (3-11)

A plot of the distribution in energy given by Eqs. (3-8} and (3-11) for
metallic tungsten at 7' = 0°K and T = 2500°K is shown in TFig. 3-10.
The area under each curve is simply the total number of particles per
cubic meter of the metal, whence the two areas must be equal.  Also, the
curves for all temperatures inust pass through the same ordinate, nnmeiy,
pr = vEut/2, at the point E = Ey, ns is
evident from Iiq. (3-8).

A most important characteristic is to
be noted, viz., the distribution function
changes only very slightly with tempern-
ture, even though the temperature change
is as great as 2600°K. The eflcct of the
high temperature is merely to give those
Fra. 3-10. Energy distribution  glgcbrons having the high energies at abso-
'.2"5(;;(';(? Hic tungsten ab 0% and 400 2 oro {those in the neighborhood of E )

still higher cnergics, whereas those having
lower encrgies have been left practically undisturbed. Since the curve for
T = 2500°K approaches the cnergy axis asymptotically, a [ew electrons
will have large values of encrgy.

An cexpression for E may be obtained on the basis of the completely
degencrate function, ‘The area under the curve of Ifig. 3-10 represents
the total number of free clectrons (as abways, per cubic meter of the
metal). Thus

Fr

N = LE” YEVAE = 3yEd

1
Iy = (:;—N) ev (3-12)
i

Inserting the numecrical value (6.82 X 10?") of the constant v in t.hﬂ
expression, there results

Eay = 3.64 XX 10N cv {3-13)

or
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Since the density N (elecetrons per cubic meter) varies from metal to
metal, then By will also vary among metals, Knowing the specific
gravity, the atomic weight, and the number of free electrons per atom,
it is a simple matter to calculate N, and 80 Fa. Tor most metals the
numerical value of Fj is less thnn 10 ev.

Ezxample. The apecific gravity of !.ungat.cn is 18. 8 and its atomic weight is 184.0.
Assume that there are two free clcct.rons per atom. Caloulate the numerical valucs of
N and Ea.

Solution. A quantity of any subistance equnl to its molecular welght in grams iz o
mole of that substance. Further, 1 mole of any substance containg the same number

of moleeules ns 1 mole of any other substance. This number is Avogadro's number and
equals 6.02 X 10 molecules per mole. Thus

N = 6.02 X 109 molecules x I mole % 18.8 B_ 2 clecirons 1 atom

mole 184 g cm’ atom molecule
cleelrons clectrons
= }2.3 b4 10”—-—W = 1.23 > 10”T—

since for tungaten the atomic and the molecular weighis are the snmne.  Therelore, for
tungsten,

Ea = 3.64 X 107123 X 10"} = 8.95 ev

3-7. Work Function. In Fig. 3-11, Fig. 3-10 has been rotated 00 deg
counterclockwise and combined with Fig. 3-8 so that the vertical axis
represents energy for both sets of curves.® At 0°K it is impossible for an
electron to escape from the metal because this requires an amount of
encrgy equal to IYp and the maximum energy possessed by any cleetron is
only Exn. 1t is necessary to supply
sn additional amount of energy cqual E'sg,'.?“
to the dificrence between i, and Eyy Qufside
in order to make this escape possible. .  7=2500% F 1 of metal

- T=0°%- - E
23 the work funciion of the metal, £

By
Ly = Ep — Iy

(3-14) Lé, } 1 Zero level

+Thus the work function of o metal Fio. 3-11. Encrgy diagram used to

. . defing the w ion,
represents Lthe minimum amount of ing the work funct

encrgy that must be given to the fastest-moving electron at the absolute
zero of temperature in order for this electron to be able to escape from
the metal. .

The experiments of Davisson and Germer® and of Rupp? on the dif-
fraction of electrons in passing through matter have verified the existenee
of the potential-energy barrier at the surface of the metal. In fact, based
on the results of these experiments together with experimentally deter-
mined values of Fw, it is possible to caleulate the valucs of Ey for the

* The atomic weights of the elements are given in the periodic table (Appendix IL1).
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metals used.  These data show fair agreement between the experimental
and theoretical values,

A sccond physicnl meaning of the term *“work function” may bo
obtained Ly considering what happens to an electron as it escapes from
a metal, without particular regard to the conditions within the interior
of the metal. A negative clectron will induce a positive charge on a

. metal from which it escapes. There will then be a force of attraction
between the induced charge and the electron. Unless the electron pos-
sesses sufficient energy to carry it out of the region of influence of this
image force of attraction, it will be returned to the metal. ‘The energy
required for the clectron to escape from the metal is the work function Ew
(based wpon this classical clectrostatic model). .

3-8. Thermionic Emission. The curves of I ig. 3-11 show that theclec-
trons in a metal at absolute zero are distributed among energics which
range in value from zero to the maximum energy Fy.  Since an electron
must possess an amount of energy at least as great as fip in order to be
able to escape, no clectrons can leave the metal. Suppose now that the
metal, in the form of a filament, is heated by sending & current through it.
Thermal energy is then supplied to the electrons from the lattice of the
hested metal erystal. The distribution of the electrons changes, owing to
the incrensed temperature, as indicated in Fig. 3-11.  As the temperature
is reiscd, some of the electrons represented by the tail of the curve of
Tig. 3-11 will have energies greater than Ep and so may be able to escape
from the metal,

Using the analytical expression from the distribution function, it is
possible to caleulate the number of electrons which strike the surface of
the metal per second with sufficient energy to be able to surmount the

surface barrier and hence escape. Based upon such a calculation,? the
thermionic current is given by

In = SA Tt FriBr or I = SA 2T amp (3-15)

where § = ares of filament, m?
Av = constant whose dimensions are amp/ {(m{°I{Y)
T' = temperature, °K
Er = T/11,600 is defined in Eq. (3-9)
Ew = work function, ev
b, = 11,600y, °IX
Equations (3-15) are two forms of the equation of thermionic emission,
They are sometimes referred to as the © Dushman equations” and some-
times as the “ Richardson equations,” since both workers developed equa-

)

tions of this form theorctically. The constant B, which has been termed

the “work function,” is known nlso as the “latent heat of evaporation
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of clectrans” froin the metal, from the analogy of electron emission with
the evaporation of molecules from a liquid.

The thermionic-cinission equation has reccived considerable experimen-
tal verification.® 'The graphical reprosentation between the thermiomie-

emission current and the temperature is generally obtained by taking the
logarithm of Eq. (3-15), viz.,

loguo I ~ 2 Joge T = logio S4s — 0.4345, - (3-16)
where the factor 0.434 represents logyo «. Hence, if we plot logyo I —
2 logio T' va. 1/7', the result should be a straight line having a slope equal
to —0.434b,. 'The verification of this cquation requires a knowledge of
the cathode temperature.  In those cases where the cathode is sufficiently
exposed, the temperature can most accurately be determined by means of
an optical pyrometer. Often, however, it is difficult or entirely impossi-
ble to see the cathode. Under these conditions & method that is besed
upon the energy radiated by the cathode is usually employed.

If a certain amount of power is supplied to a cathode, it will become
heated and the temperature will increase until temperature equilibrium
oceurs.  Equilibrium exists when the rate of heat removal by all causes
equals the rate of heat produced as a result of the clectrical input. Since
the cathode is generally a thin filament in a vacuum, no convection of heat
can occur. A small amount of heat will be conducted away by the leads,
but most of the hent loss is due to the radisted energy. The rate at which
energy is radiated from the heated surface is expressed explicitly as a func-
tion of the temperature of the body by the Stefan-Boltzmann relation

P =567 X 10-%;T*  watts/m? (3-17)

where P is the power radiated, in watts per square meter, by the surface
whose emissivity is er; the factor 5.67 X 10~* watt/ (m2) (K4} is known
as the Stefan-Boltzmann constant: and T is the temperature in degrees

Kelvin, Tho value of er is always less than unity for all practical cases.

It varies slightly with temperature and must be determined experimen-
tally. Forsythe and Worthing!® and Jones and Langmuir!! have deter-
mined the temperature of tungsten as a function of the input power per
square centimeter, over wide ranges of temperature. These data deter-
mine er. Hence, by measuring P, the temperature T is found.?

An early form of an emission equation suggested on the basis of the
classical kinetic theory by O. W. Richardson' ig

Iy = A'Thebrr (3-18)

where A’ is a quantity that depends upon the material and b is 2 quantity
related to, but not equel to, b,. Experimentally, it is impossible to dis-
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tinguish between Fqs. (3-15) and (3-18).  This dilficulty arises from the
facl that both cqualions predict the same exponential dependence upon
the temperasture; and sinee this fector is such a rapidly varying one, it
overshadows the dependence upon the 7 or the 77 term.  For example,
it follows from the sccond of Iiqs. (3-16), by taking the derivalive of the
natural logarithm of this cquation, that

H dIth — bo g _
I_M_(z+«,f,) 1 (3-19)

For tungsten, b, = 52,400, so that at & normal operating temperature of
2400°K the fractional change in current dfu/fo is 2 4 22 times tho
fractional change in the temporature. It is to be noted that the term
22 (= b,/T) arises from the exponential term in the Dushman equation,
and the term 2 arises from the 7' term. |, Beeause of this slight depend-
ence upon the power of the 7' term, it is impossible to use the experi-
mental resulls as a criterion to favor one or the other equation. We
observe in passing that the thermionic current is a very sensitive fune-
tion of the temperature, since a 1 per cent change in 7' results in o 24 per
cent change in I, L

It must be emphasized that Eqs. (3-15) give the electron emission from
a metel at a given temperature provided that there are no externa! ficlds
present.  If there are cither necelerating or retarding ficlds at the suriace,
then the actual current collected will be greater or less than the emission
current, respectively.  The clfect of such surface fields is discussed later
in this chapter.

3-8, Contact Potential. Consider two metals in contact with each
other, ns at the junction Cin Fig. 3-12. The contnct diffcrence of poten-
tinl between these two metals is defined as the
potential difference 45, between a point A just
outside metal 1 and a point B just outside
metal 2. The reason for the cxistence of the
difference of potential is casily understood.
When the two metals are joined nt the boundary
C, clectrons will flow from the lower-work-fune-
tion metal, say 1, to the other metal, 2. This
flow will continue until metal 2 has acquired so
much negative charge that a retarding field has built up which repels any
further electrons. A detailed analysis™ of the requirement that the num-
ber of eleetrons traveling from metal 1 across junction € into metal 2 is
the same as that in the reverse direction across ¢ leads to the conelusion
that _this equilibrium condition is attained when the Fermi cnergies iy

Fra, 3-12. Two melnls in
contact at the junclion (.

of the two metals arc located at the same height on the energy-level -

diagram. To satisly this condition the potentinl-cnergy dingram for the
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two metals must be drawn as in Fig. 3<13.  Tho barriers at the two sup-
faces A and B arc indicated as vertical lines instead of curves asin Iig. 3-8
beenuse the distance between the surfaces A and B is very largo in com-
parison with atomic dimensions. " '

The diagram should be clear if it is recalied that,Enh% By — Ly,
From this figure it is seen that

EBap = By ~ Iy, o, (3-20)

which means that the conlact difference of polential belween two melals equals

the difference belween their work functions. This result has boon verified

experimentally by numerous investigators,
If metals 1 and 2 are similar, the contact potential between them is evi-
dently zero.  If they are dissimilar mctals, the metal having the lower

&}

s
B p=Bwa-Ew
L By
Al 1 E
Metal l Metol " | By, a2 Metal
4 ) ! % 2
Eur ‘fEH' 1
T s Ly
Juncfran Svrfoce Surfoce
c A B

Fie. 3-13. The potentinl-encrgy system of two metals in contach.

work function becomes charged positively and the higher-work-function

~.metal becomes charged negatively. Iit a vacuum tube the cathods is

usually the lowest-work-function metal. If it is connected to any other
clectrode externally by means of a wire, then the effective voltage between
the two clectrodes is not zero but cquals the difference in the work func-
tions. This potentinl difference is in such a direction as to repel the clee-
trons being emitted from the enthode. 17 o batllery is connected belween

the two electrodes, then the eficetive potential is the algebraic sum of the

applied voltage and Uhe contact pobential.

3-10. Energies of Emitted Efectrons. Since the clectrons inside o
metal have a distribution of energics, then those which eseape from the
metal will also have an energy distribution. It is easy to demonstrate
this experimentally. Thus consider a plane emitter and a planc-parallel
collector. The current is measured as & function of the retarding volt-
age fi, (the emitter positive with respect to the collector), If all the
clectrons left the cathode with the same energy, then the current would
remain constant until o definite voltage was reached and then it would
fall abruptly to sero.  Vor example, if they all had 2 ev energy, then when
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the retarding voltage wns greater than 2 volts the electrons could not sur-
mount the potential barrier between cathode and anode snd no particles

would be coliected. IBxperimentally no such sud i .

is found, but instead there is an exponentin! decrense of current [, with
yoltage according to the eguation /
(321 -

Iy = Ipe¥/Er

"This result may be obtained theoretienlly ns follows: Since I is the cur-
rent for zero retarding voltage, then the current obtained when the barrier
height is increased by F, is determined from the right-hand side of the
first of Eqs. (3-15) by changing Ew to By + L,. Hence,

Ib - SAGTWE—(BV-FRJ/B!’ = I.LG—BMET

If Iy is the applicd (sccelerating) anode potential and if £’ is the
(retarding) contact potentinl, then B, = E' — F;, and Eq. (3-21) becomes

I, = I¢tEv/Er (3-22)
where -
I = Ie5787 ¢ (3-23)

represents the current which is collected at zero applied voltage. Since
E' > Ez, this current [ is a small fraction of Iy, If I, is increased from
zero, the current I, incresses exponentially until the magnitude of the
applied voltage F, cquals the contact potential E’. At this voltage

E, = 0, and the thermjonic current

0107 is collected. If F, > E’, then the
field neting on the emitted electrons
fogio Iip |~~~ is in the nccelerating direction and

the current remains at the value ;.

A plot of the term log,o I vs, Eyshould

be of the form shown in Fig. 3-14.

'The nonzero slope of this broken-line

| curveis (11,600logwoe)/T = 5,030/T.
o 3 ' .

5 TYrom the foregoing considerations,

the potentinl represented by the dis-

Fro. 3-14. To verify the retarding- tance from O to O is the contact

potential cquation, logio I s plotted vs.  potential . Because most com-

Ba. mercinl diodes do not even approxi-

mate a plane eathode with a plane-paraliel anode, the veolt-ampere

characteristic indicated in Fig. 3-14 is only approached in practice. Fur-

thermore, since the effect of space charge (Chap. 4) has been completely

neglected, B, (3-21) is valid only for low values (micronmperes) of cur-

rent. Ior larger values of Iy, the current varies as the three-halves power

of the plate potential (Scc. 4-4).

o
T
Retording  Acceleroting
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Ezample. What perceninge of the electrons lenving & tungsten filement at 2700°K
can surmount a barrier whose height is 1 ev?

Solution. Using Bq. (3-21), with E. = 1, snd remembering that Er = 7'/11,600
yields
L OLIOXD/LI00 w g—838 £ 0,014
In -

Hence, only about 1.4 per cent of the electrons have energies in excess of 1 ev.

If the emitter is an oxide-coated cathode operating at 1000°K, then a
calculation similar to the above gives the result that only about 0.001 per
cent of the electrons have a surface-directed energy in excess of I evl

A statistical analysis'® shows that the average energy of the escaping
electrons is given by the expression

E=2E; ev (3-24}

For operating temperatures of 2700° and 1000°K the average energies of
the emitted electrons are 0.47 and 0.17 ev, respectively.

These calculations demonstrate the validity of the assumption made in
C}mp. 1 in the discussion of the motion of electrons in electric and mag-
netic fields, viz., that the electrons begin their motions with very small
initial velocities. In most applications the initial velocities are of no
consequence, but they are of significance in tuber which are operated at
low electrode voltages.

3-11. Accelerating Fields. Under normal operating conditions, the
field applied between the cathode and the collecting anode is accelerating
rather than retarding, and so the field aids the electrons in overcoming
the image force at the surface of the metal. This accelerating ficld tends,
therefore, to lower the work function of the metal and so results in an
increased thermionic emission from the metal. It can be shown'® that

the current 7 under the condition of an accelerating field of & volts per
meter at the surlace of the emitter is

I = I,etodaobir (3-25)

where I, is the zero-field thermionic current and 7 is the cathode temper-
ature in degrees Kelvin. The fact that the measured thermionic currents
continue to increase as the applied potential between the cathode and the
ancde is increased is often referred to as the Schottky effect, after the man
who first predicted this effect. Some idea of the order of magnitude of
this increase can be obtained from the following illustration.

Example. Consider s cylindrical cathode of radius 0.01 em and & conxial eylindrical
ancde of radius 1.0 em. The Ltemperature of the eathode is 2500°K. If an ncceler-
ating potential of 500 volts ia applied between the cathode and the anode, ealeninte

the percentage increase in the zero-oxternal-field thermionic-emission current because
of the SBchottky effect.
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Selution. The cleetric-ficld intensity ab any poink r (metera) in the region belween
the electrodes of n cylindrienl enpacitor, according to cinasicn! electroatatics, is given
by the fermula

By
Sl (rafr) v
where In denotes the logarithm to the natural base ¢, By is the plate voltage, r4 is the

anode radius, and re is the cathode radius.  Thus the clectrie-field intonsity at the
surface of the eathode is

volta/im (3-20)

500 1

= GpmaT o e = LOBE X 10% voll.
&= 5303 Tog s 100 174 1.085 X 10* volis/m

It followa from Eq. (3-25) that
~

}
I _ (04304401085 X oo} _ .

logm -I-; 2,500

Hence, I/Tn = 1.20, which shows that the Schottky theory predicls n 20 per cent
increase over the zero-field emission ourrent.

3-12. High-field Emission. Suppose that the accelerating field at the
surface of a “cold” cathode (one for which the thermionic-emission cur-
rent is negligible) is very intense.  Under these circumstances the vari-
ation of the emission-current density with the strength of the electric-field
intensity at the surface of the metal has been caleulated by several investi-
gators.”  The result obtained by Fowler and Nordheim is

J = Cgrenrs amp/m? (3-27)
where -
_ 6.2 > 10— EM t . ' 2
C= T (m) + . amp/volt (3-28)

D = 6.8 X 10°Ew!  volts/m

This equation has received direct experimental verification.!* This
cffect is called high-field, -cold-cathode or auloelectronic emission. The
clectric-field intensity at an electrode whose geometry includes a sharp
point or edge may be very high even if the applied voltage is moderate.
Tence, if high-field emission is to be avoided, it is very imporlant to
shape the clectrodes in a tube property so that a concentration of electro-
static lines of flux does not take place on any metallic surface. On the
other hand, the cold-cathode effect has been used to provide several
thousand amperes in an X-ray tube used fot high-speed radiography.!®

3-13. Secondary Emission.” "The namber of secondary electrons that
are emitted from a material, either a metal or o diclectric, when subjected
to clectron bombardment hes been found experimentally to depend upon
8 number of factors.  Among these are the number of primary electrons,
the encrgy of the primary electrons, the angle of incidence of the electrons
on the material, the type.of material, and the physical condition of tlie
surface. The seecondary-emission ratio, defined as the ratio of the number

* than to true secondary electrons.
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of secondary cleetrons por primary clectron, is small for pure metals, the
meximum value being between 1.5 and 2. It is increased markedly by
the presence of a contaminating layer of gas or by the presence of an
electropositive or alkali metal on the surface. Tor such composite sur-
faces, secondary-emission ratios as high as 10 or 15 have been detected.

‘This ratio as a function of the energy of the impinging primary electrons
on & cesium-antimony and a silver- ’

magnesium surface is shown in Fig. 0 1]

3-15, 9 P
The maximum in the secondary- / S

emission ratio curve can be explained 8 n

qualitatively, Tor low-energy pri- o,

maries, the number of sccondarics B Jild

that arc able to overcome the surface 86

attraction issmall, Asthe energy of £ 5 B

the impinging electrons increases, ;

more encigebic secondaries are pro- $4

duced and the sccondary-emission §3

ratio increases. Since, however, the
depth of penetration increases with
the energy of the incident electron,
the secondaries must travel a greater
distance in the meta.i ‘before they 00 100 200 ‘300 400 505 800 00
reach the surface. This Increases the Energy in electron volls
probability of collision in the metal, g, 3.15 Variation of sccondary-
with a consequent loss of energy of emission ratio with primary voltage.
these secondaries. Thus, if the pri- Eg;";”“y of 4. B. Du Mont Laboratories,
mary energy is increased too much,.

the secondary-emission ratio must pass through a maximum.

Most secondary electrons are emitted with small energies. There is
evidence®! that more than 85 per cent of the secondary eloctrons emitted
from a surface have energies of less than 3 ev.  This condition is to he
expected since a rapidly moving inner electron should be able to induce
the same type of phenomenon as 8 fast-moving primary electron. The
small pereentage of high-cnergy clectrons that is present is attributed to
those primary electrons which have been reflected from the surface, rather
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It is possible to induece clectron emisgion by bombarding a surface with
positive ions instead of with electrons.? This process is much less
eflicient than electron bombardment. Ag g result, the energies of the
impiuging ions must be much greater than those of electrons in order to
vield & comparahle Recondary-emission ratio. Nevertheloss, this process

plays a fundamental role in some types of discharge to be diseussed lator.



