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8 1. EXPERIMENTS ON QUANTIZATION

2.3 AnaLysis oF THE Data

Table 1.1 is a sample of data obtained by a student.f Two drops were
used and several charges were measured; for each charge six measurements
were performed and averaged as shown in Table 1.1.

The pertinent parameters for these data were

Distanece of fall d = 7.68 ¥ 102 em

g

Temperature T =25"C

Pressure P = 76.01 em Hg

Density f = (p—a) = BE2 X 107 gm/ecm?
Potential V = 500 V = 1.666... statvolts
Plate separation & = 4.71 X 10-'cm

A plot of the data and the linear least squares fit are shown in Fig. 1.4,
From the least squares fit e nhtain (see Eq. 2.5)

Ay = 0.1533 £ 0.0011 By = —0.0380 £ 0.0053
e = (490 £ 0.1) X 10~ esu

Az = 0.1439 & 00017 B, = —0.0402 & 0.0038
e = (469 £ 0.1} X 107" esu

where the values of e are ealculated] from A; they are in good agreement
with the accepted value

e = 4803 ¥ 10— gsu

3. The Frank-Hertz Experiment

3.1 GENERAL

From the early spectroscopic work it was clear that atoms emitted radi-
ation at discrete frequencies; from Bohr's model the frequency of the radi-
ation » is related to the change in energy levels through AE = he. Furth{:'r
experiments demonstrated that the absorption of radiation by atomie
vapors also occurred only for discrete frequencies. .

It is then to be expected that transfer of energy to atomic electrons by
any mechanism should always be in discrete amounts§ and related to _t.hc
atomic spectrum through the equation given above. One such mechanism
of energy transfer is through the inelastic scattering of electrons from the

t D). Peters, clasa of 1962, :

} It is seen that in this special case (partly because of the low voltage) the diameter of
the drops is so small that the correction to the Stokes equation is considerable (15
percent).

§ They are still bound after the process,
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entire atom. If the atom that is bombarded does not become ionized, and
since little energy is needed for momentum balance, almost the entire
kinetic energy of the bombarding electron can be transferred to the atomie
system,

Frank and Hertz in 1914 set out to verify these considerations—namely,
that (a) it is possible to excite atoms hy low-energy cleetron bombard-
ment, (b) that the energy transferred from the electrons to the atoms
always had discrete values, and (c) that the values so ontained for the
energy levels were in agreement with the spectroscopic results.

The necessary apparatus consists of an electron-emitting filament and
an adequate structure for accelerating these electrons to a desired {variable)
potential. The accelerated clectrons are allowed to bombard the atomic
vapor under investigation and the excitation of the atoms is studied as
a function of accelerating potential.

For detecting the excitation of the atoms in the vapor it is possible to
observe, for example, the radiation emitted when the atoms return to the
ground state, or the change in absorption of a given spectral line, or some
other related phenomenon ; however, 4 mueh more sensitive technique eon-
sists in observing the electron beam itself. Indeed, if the eleetrons have been
accelerated to a potential just equal to the energy of the first excited level,
some of them will excite atoms of the vapor and as a consequence will
lose almost all their energy; clearly, if a small retarding potential exists
before the collector region, electrons that have seattered inelastically will
be unable to overcome it and thus will not reach the anode.

These conditions are created in the experimental arrangement by using
two grids between the cathode and collector. When the potentials are
distributed as in Fig. 1.5a, the beam is accelerated between the cathode
and grid 1; then it is allowed to drift in the interaction region between the
two grids and has to overcome the retarding potential between grid 2 and
the anode. When the threshold for exciting the first level is reached, a
sharp decrease in electron current is observed, proportional to the number
of collisions that have occurred (product of atomie-density and cross sec-
tion). It is clear that when the threshold of the next level is reached, a
further dip in the collector current will be observed. These current de-
creases (dips) are superimposed on a monotonically rising curve; indeed
the number of electrons reaching the anode depends on V.., inasmuch as
it reduces space charge effects and elastic scattering in the dense vapor.
In addition, the dips are not perfectly sharp because of the distribution
of velocities of the thermionically emitted electrons, and the rise of the
excitation cross section,

An alternate distribution of potentials is shown in Fig. 1.5b, where V..
1s applied at grid 2 so that an electron can gain further energy after a col-
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sity. o _
dmAnu:,tr,her important point is that in prineiple the experiment must. be
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performed with a monatomic gas; since if a molecular vapor is bombarded,
it is possible for the electrons to transfer energy to the molecular energy
levels which form almost a continuum. Some of the preferred elements
for the Frank-Hertz experiment are mercury, neon, and argon.

The same apparatus can be used for the measurement of the ionization
potential—that is, the energy required to remove an electron completely
from the atom. In this case, instead of observing the bombarding electron
beam, it is easier to detect the ions that are formed. The distribution of
potentials is as shown in Fig. 1.5¢, where the anode is made slightly nega-
tive with respect to the cathode; no electrons can then reach the anode,
which becomes an ion collector. The accelerating potential is increased
until a sharp rise in the ion eurrent measured at the anode is observed,

In both types of measurements the values obtained for the accelerating
potential have to be corrected for the contact potential difference (epd)
between eathode and anode.t If in the excitation experiment the same level
has been observed two or more times, however, the potential difference
between adjacent peaks is an exact measure of the excitation energy,
since the contact potential difference shifts the whole voltage seale, Onee
the excitation energy has been found the contact potential difference is
given by the difference between this true value and the first peak; in turn

the contaet potential difference so found ean be used to correet the joni-
zation potential measurement.

3.2 Toe ExpEriMENT

In this laboratory a mercury-filled tube made by the Leybold Company
(55580) is used; the clectrode configuration is shown in Fig. 1.6; the circuit
diagrams for the measurement of excitation and of ionization potential
are given in Figs. 1.7a and 1.7b respectively,

As can be seen from the eircuit diagram, grid 1 is operated in the neigh-
borhood of 1.5 V, and the retarding potential is of the same order. The
anode currents are of the order of 10-? amp and are measured either with
& sensitive galvanometer (for example Leeds and Northrup No. 2500)
or with a Keithley 600A electrometer (see Chapter 4) ; adequate shielding
of the leads is required to eliminate a-c pickup and induced voltages. The
diagram of Fig. 1.7a uses the distribution of potentials as shown in Fig,
1.5b and the accelerating voltage can be measured with an ordinary volt-

meter (for example, Triplet 625) in steps of 0.1 V, or with a vacuum tube
voltmeter,

t Bec Chapter 3. Briefly this iz because the “work funetion” for the metal of which
the anode is made is usiually higher than that of the eathode. The work function is a

measure of the “ionization potential” of the metal; that is, of the energy needed to ex-
tract an electron from it.
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Fio. 1.6 (Left) Sketch of a eylindrical Frank-Herts tube.

Fio. 1.7 (Belsw) Wiring diagram for the Frank-Hertz
experiment. (a) For obeervation of excitation. (b} For
obsorvation of ionization.
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The Frank-Hertz tube is placed in a small oven which is heated by line
voltage through a variac; it should be operated in the vieinity of 200° C
for the excitation curve and between 100° to 150° C for the ionization
curve. To measure the temperature a copper-constantan thermocouple
should be inserted through the small hole of the furnace. The junction
should be positioned on the side of the tube near the electrodes. The other
junetion is immersed in a thermos of ice and water bath. The potential
developed across the thermocouple is measured with a potentiometer
(usually set on its lowest scale); Fig. 1.8 gives a calibration curve for a
copper-constantan thermocouple.
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Fig. 1.8 Calibration of copper constant thermoeouple using ice standard,

The resolution and definition of both the excitation and ionization curves
is & function of atom' density (temperature) and electron beam density
(filament and grid 1 voltage) and the experimenter has to find the optimum
conditions. However, for large beam densities a discharge occurs, which
obviously is to be avoided.

A suggested adjustment procedure is to set grid 2 at 30 V and then
advance grid 1 until the discharge sets in, as evidenced by the immediate
build-up of the anode current. Grid 2 should then be quickly returned to
0 V and grid 1 set slightly below the breakdown voltage; a reasonable
filament voltage is between 4 and 6 V. To determine whether the tube is
overheated it can be taken out of the oven for about 30 sec; the collector
current will then increase and maxima may appear if such is the case. If
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Fro. 1.0 Oscilloscope display of Frank-Herts experiment. (a) Beam current va. ac-

cclerating potential. (b} Ion current va. accelerating potential.

the tube is too cool, the emission current will be large, and the maxima,
particularly those of higher order, will be washed out.

 With present-day techniques it is possible to use an oscilloscope for a
simultancous display of the electron or ion current against accelerating
potential. In this laboratory a Tektronix 545 oscilloscope was used; its
sweep generator (sawtooth) output is fed to the accelerating grid, while it
synchronously drives the horizontal sweep; the output of the Keithley is
fed to the vertical input. An excitation eurve as well as an ionization curve
obtained by a studentf in this fashion are shown in Fig. 1.9. The oscillo-
cope method can be very useful in finding optimum operating conditions
for mercury vapor pressure and electron beam density.

3.3 Awnavysis oF THE Data

Two sets of data obtained by a student} for the excitation potential
point by point are shown in Fig. 1.10; both curves are obtained at a temper-
ature of 195° C and with +1 V on grid 1. The filament voltage is 2.5 V
for curve C and 1.85 V for curve D with the consequent decrease of the
electron current by a whole decade.

Readings are taken for 1-V changes on grid 2 with smaller steps in the
vicinity of the peak. A significant decrease in electron (collector) current is
noticed every time the potential on grid 2 is increased by approximately 5 V,
thereby indicating that energy is transferred from the beam in (bundles)
“quanta’” of 5 eV only. Indeed, a prominent line in the spectrum of mercury
exists at 2537 A, corresponding to 12378,/2537 = 4.86 eV, arising from the

1 D. Btatt, class of 1963.
1 D. Owen, class of 1963.
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trﬂ.n?it.iun of thf: ﬁeﬁp *Py excited state to the 6565 'Sy ground state.t Thus
:.E u:;t.erprc;:;atmn is that the electrons in the beam excite the mercury
a: :
pmeagr‘om the ground state to the *P, state, thereby losing 4.86 ¢V in the
:I‘he iﬂua.tl,inn of the peaks is indicated in Fig. 1.10 and was measured in
this case with a vacuum tube voltmeter (VIVM). The average value ob-

t See Chapter 2.
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tained for the spacing between peaks is
502401V

to be compared with the accepted value of
490V

while the spectroscopic value for the energy level difference (as mentioned
before) is 4.86 eV.

Using the value found for the spacing between peaks and the loeation
of the first peak, we obtain the contact potential:

(6.65 = 0.15) — (5.02 £ 0.1) = 163 = 018V

As mentioned in Section 3.1, with the configuration of potentials used
(Fig. 1.5b) it is more probable that the same energy level will be excited
twice rather than that swum’l different levels will be exeited; indeed this
is the way in which the data of Fig. 1.10 have been interpreted. This is not
surprising if one considers the excitation probabilities for the energy levels
lying closest to the ground state of mercury. It is possible, however, by
using different grid and voltage configurations (for example, Fig. 1.5a)
and improved resolution, to observe the excitations to other levels, namely,
the 6 2Py, 6 3P and 6 1Py,

For the ionization potential, data obtained by a gtudentt are shown
in Fig. 1.11. A word of caution is to be added to the interpretation of such
jonization curves, which seem strongly dependent on filament voltage and
vapor pressure: indeed the very sharp increase ohserved in ion current
is due to an avalanche (regenerative effect) of the ejected electrons ionizing
more atoms, the thus-ejected electrons ionizing still more atoms and so
on; this avalanche does not necessarily occur as soon as the ionization
threshold is erossed. If the vapor is too dense, the ions recombine before
reaching the anode, thus masking the effect until complete breakdown
sets in.

The curve shown was taken at a temperature of 155° C with a fila-
ment voltage of 2.6 V. If, then, the onset of ion current is taken to be at
11.4 &+ 0.2 V, and using the value for the contact potential previously de-
termined (from the excitation curve), 1.63 & .18 V, the ionization po-
tential is obtained as

(114 £ 0.2) — (1.63 &= 0.18) = 9.77 & 0.25 eV

only in fair agreement with the accepted value of 10.39 eV.

An additional feature of the curve of Fig. 1.11 is a “knee” in the ion
eurrent, setting in at approximately 8 V; the observation of this “knee”
as well is strongly dependent on the temperature and current density, but

t J. Reed, class of 1961.
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can be consistently reproduced over a considerable range of -
ctc?‘s. In order to understand this behavior we rerrmmbgei 1;h£:;1§1 :Tzi zm[
of ions at the anndt_a is equivalent to the departure of electrons; indeed
the observed behavior is due to a photoelectric effect pmdumr.i at the
anode, by shnr_t-wavelcngth light quanta (the clectrons are further ac-
celerated by grid 2). When the electron beam reaches 8 V, it can excite
the 6 1P, ietrel (lying at 6.7 eV above the ground state, plus II.EE V for con-
t.e.mt pm_,entml difference) , so the mercury atoms radiate the 1849 A ultra-
vmlu_at Im_e w?mn_ returning to the ground state. These quanta are ver
efﬁt:mn_t. in ejecting photoelectrons, and the cylindrical geometry of th‘:
anode is most favorable for this process.
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