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The theory of coupled oscillators is very basic to the radiation and absorption of energy.  
Molecules, atoms and nuclei are oscillating systems, and are coupled to oscillating electro magnetic 
fields through their electric or magnetic dipole or other moments.  In solids, the coupling and 
masses of adjacent atoms determines the frequency spectrum of the sound waves which can 
propagate through them. 
 

In this experiment the oscillators are 
pendulums and the effects of coupling two 
pendulums are studied.  We begin by writing 
the general equation of motion for a single 
simple pendulum, 
 

 I    (1) 
 
where I is the moment of inertia of  the 
pendulum and Γ is the restoring  torque. If the 
string has no mass and the masses are 
considered point charges we can write 

 

 LmgmL  sin2   (2) 

 
where L is the total pendulum length. This equation is difficult to solve because the angle θ 

appears on the right hand side as a trigonometric argument.  However, if we keep the angles small 
we can write to a good approximation  sin  and Eq. 2 becomes 
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where,  after  direct  substitution,  we  find  that  the  angular   frequency Lg /0  . 

 
If we now consider two coupled pendulums, it is apparent that for θ2 > θ1 the coupling 

torque acting on pendulum 1 by 2 is given by, 
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where l indicates where the spring is attached. Assuming the spring has no mass we can then 
write for pendulum 1 
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which for small displacements becomes 
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and similarly for pendulum 2 
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Two important special cases, the "normal" modes, can be studied.  The even mode is 

defined by 21    and 21    at t = 0. The pendulums will in effect not be coupled, since the 

spring extension will be constant and the oscillations will be in phase. The angular frequency will 
be ωo. 
 

The initial conditions for the odd mode are 21   , 21     at t = 0.  In this case, we 

have oscillations 180o out of phase, and it can be shown that the frequency is given by 
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For small coupling, the binomial approximation yields 
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For any arbitrary initial conditions, the oscillation of each pendulum is a superposition of the 

normal modes.  Of particular simplicity is the case where at time t = 0 we have 011    , and 

02   but 02   , some arbitrary value.  Hence we are starting the pendulums with one having 

no energy, and the other having some energy, i.e. they begin swinging 90o out of phase.  For these 
initial conditions the energy is completely transferred back and forth between pendulums, with the 
frequency of the exchange determined by the degree of coupling.  The superposition of the normal  
modes will give rise to beats, with the beat frequency (angular) given by 
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When other initial conditions are used, the beats are not complete, i.e. neither pendulum will ever 
be instantaneously at rest at the origin. 
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Experiment 5: Procedure and Analysis 
 
(A) Determining the Spring Constant, kk   
 

Select 4 springs. Hang a mass from one spring and measure the associated displacement. 
Repeat for 6-8 masses and for each spring. In your report analyze your mass and 
displacement data to find kk  for each spring.  

 
(B) Normal Modes and Coupling Frequency 
 

Record the mass, the four coupling lengths, and the total pendulum length for each of the 
pendulums. In your analysis you should use the average of each complementary value to 
determine theoretical values. 

 
Measure the amplitude versus time signal for each pendulum. Data should be taken for 
each possible combination of spring constant, k, and mounting location, l, for both even 
and odd initial conditions (32 trials in total).  
 
Note: Before taking data you should determine the best sampling frequency and total 
sampling time to ensure a good Fourier transform for your analysis. This means you 
should try to answer as much of questions 1 and 2 from Appendix A as you can 
BEFORE coming to the lab. 

 
Use Fourier analysis to determine the angular frequency ω from each dataset (64 values).  
Provide an appropriate analysis of the frequencies in each case compared to theoretical 
predictions.  
 
Hint: For the odd trials determine the slopes and intercepts of a plot of ω2 vs. k and of ω2 
vs. l2, with the associated error limits, using equation 8a and compare with calculated 
values. Note: All ω2 vs k plots should be done on one graph, and all ω2 vs l2 on another. 
 

 (C) Beat Frequency 
 

Measure the amplitude signal versus time for four beat trials. Each trial should use a 
different combination of spring constant, k, and mounting location, l. When choosing 
appropriate k and l values you should consider the small coupling approximation used to 
derive equations 8b and 9.  

 
Using Fourier analysis techniques determine the beat frequencies for each trial and 
compare them to the theoretical values predicted by equation 9. 



 

 
 
 4 

Appendix A: Some Notes on Fourier Analysis 
 

You will need to obtain a copy of Igor Pro (or have access to other similar software, e.g. 
Matlab) in order to perform the Fourier analysis for this experiment.  
 
Fourier analysis is a technique used to transform data taken in the time domain into data 
in the frequency domain. The Fourier transform indicates the strength of each component 
frequency in the time domain signal by returning the frequency strength as amplitude on a 
Fourier amplitude versus frequency plot. For example, if one were to take the FFT of the 
function    tBtAy 21 sinsin    where A < B we would get, 

 

  
 
Where the left plot is the time domain signal and the right is the Fourier transform. The 
FFT plot tells us that the wave was composed of two sine waves of frequencies 10Hz and 
25Hz. The 25Hz component clearly had the stronger amplitude in the time domain signal. 
 
In your report use the answers to the following questions to discuss your results: 
 
1) Determine the separation in frequency between each point in the frequency 

domain spectrum.  This can be used to place an uncertainty on your frequency 
values.  What determines this separation in the original time domain data? 

 
2) What is the maximum frequency you are able to observe in your Fourier 

transform?  What property of the time domain data determines the maximum 
observable frequency? 

 
Information on using the Fourier Transform analysis in Igor Pro can be found here: 
http://www.wavemetrics.net/doc/igorman/III-09%20Signal%20Processing.pdf 
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