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I. ABSTRACT

A wide variety of physical systems exhibit some form of oscillatory motion, such as the coupled vibrations between
adjacent atoms and molecules. The importance of these oscillations to properties such as radiative interactions
motivates the application of a mathematical framework to describe coupled oscillations and tools to simplify the
extraction of characteristic frequencies from complicated waveforms. To this end, a simple form of oscillatory motion
is studied in the case of two pendulums coupled together by a spring. The method of normal coordinates is applied
to obtain theoretical values for the oscillatory frequencies. These values are compared to those obtained from the
Fourier transforms of data sets of odd, even, and beat oscillations of the pendulums

II. INTRODUCTION

Oscillatory motion can be found in most physical phenomena, including electronic circuits, n-body systems, and the
quantum harmonic potential. This allows for a wide variety of complicated systems to be modelled using comparatively
straightforward mathematical methods. Crystal lattices and atomic nuclei are one such system, as the interactions
between neighbouring atoms manifest themselves in vibrational modes and affect a variety of atomic properties. These
motions allow for specific frequencies that depend on atomic properties such as mass and charge, and on the nature
of the specific interactions involved. It is understood that these coupled oscillations significantly affect how atomic
or molecular structures interact with radiation, so there exists a clear motivation to find a reliable mathematical
framework to model them.

The Fourier transform is a useful mathematical tool for analyzing systems exhibiting periodic motion. It trans-
forms the domain of an oscillatory input from time to frequency, allowing for the simple identification of oscillatory
frequencies. This has substantial applications to the previously mentioned physical systems. In our experiment, two
pendulums are coupled together with springs of varying spring constants, and at different coupling heights, to provide
a simple model of adjacent atoms in a lattice. The pendulums are allowed to oscillate in both their even and odd
modes, and the resulting waveforms are Fourier transformed to obtain their frequency spectra, so that they may be
compared to the theoretically predicted results.

III. THEORETICAL BACKGROUND

When objects such as atoms are placed in spaces where they can interact with one another, they undergo oscillatory
motion due to the forces they exert on one another, and on the quantization of their available energy states. To
understand the physical properties of such systems it is important to characterize this oscillatory behaviour. Radiation,
for example, by either adding or subtracting energy from the system, directly affects the allowable frequencies of
vibration that the atoms can undergo (not to mention that photons themselves are oscillating electro-magnetic waves).
To model such systems, a simple model comprising two pendulums can be constructed. The springs coupling the two
pendulums, with their respective spring constants and mounting locations along the length of the pendulums, can be
thought to represent the strength of the interaction between two adjacent atoms. For a simple pendulum of length
L, the restoring torque is given by:

Γ = −Iθ̈ (1)

Where θ is the angle between the pendulum and its equilibrium position (with θ being the corresponding acceler-
ation), and the moment of inertia, I, given by mL2, where m is the mass at the end of the pendulum (the pendulum
itself is assumed to be a massless string). In this case, the restoring force is gravity, so the equation can be re-written
as:
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mL2θ̈ = −mgL sin θ (2)

Applying the small angle approximation sin θ ≈ θ gives the well known equation θ̈ = − g
Lθ with solutions θ =

θ0 cosω0t. Substituting the solutions in produces a formula for the angular frequency of a single pendulum,

ω0 =

√
g

L
(3)

Extending this approach to two pendulums coupled together necessitates the addition of a spring term to Eq.2,
which depend on the relative angle between the pendulums, and on the distance, l, between from the pivot to the
spring mounting. Now, with indices denoting the form for each pendulum,

mL2θ̈1,2 = −mgL sin θ1,2 + k`2(sin θ2,1 − sin θ1,2) (4)

Applying the small angle approximation once again gives:

θ̈1,2 = − g
L
θ1,2 +

k`2

mL2
(θ2,1 − θ1,2) (5)

It is possible to select, for this set of equations, a pair of co-ordinates or nodes, relative to which all parts of the
system oscillate with the same phase and frequency. These are called normal modes. There are a total of two for
the coupled pendulums, the even mode and the odd mode, which correspond to symmetrical and anti-symmetrical
solutions respectively. The former is defined by θ1 = θ2 and θ̇1 = θ̇2, while the latter has θ1 = −θ2 and θ̇1 = −θ̇2 at
the initial time.

In the case of the even mode, the pendulums will oscillate as if they were uncoupled, as they share a common phase
and will not experience restoring forces from the spring. As for a single pendulum, the frequency of oscillations is
given by Eq.3. On the other hand, the odd mode introduces a phase difference of π, so that θ1 = −θ2.

Since the motion is expected to be oscillatory, the following change of variables is made:

θ1 = A1e
iωt = −A2e

iωt = −θ2 (6)

Equation 5 can now be rewritten as −ω2eiωt = − g
Le

iωt + k`2

mL2 · (−2eiωt), which simplifies further to:

ω2 = ω2
0 +

2k`2

mL2
(7)

and

ω = ω0 +
k`2

ω0mL2
(8)

This last equation is obtained by applying the binomial approximation to Eq.7.
The two normal mode coordinates used in this method form a basis consisting of the even and odd modes. It can

therefore be inferred that oscillations which do not match the initial conditions of either normal coordinate must be
super-positions of the two. Initial conditions that fall within this category give rise to beats in the oscillations. Of
particular interest are initial conditions where one pendulum is at rest at its equilibrium position (θ1 = θ̇1 = 0), while

the other is at rest (θ̇2 = 0) at some arbitrary value of θ2. This creates a phase difference of π2 between the oscillations
of the two pendulums, and the results in the energy passing completely from one pendulum to the other (and back
again).

It should be noted that the frequency of oscillations of the even and odd modes differ by the term k`2

ω0mL2 . This is
the frequency of the beats. This summarizes the theoretical description of the behaviour of coupled pendulums. All
that is needed from this point is a set of mathematical tools to break up the experimental data obtained from their
oscillations to extract the frequencies and compare them to the theory. The Fourier transform is just such a tool.

The Fourier transform is motivated by the applications of Fourier series, and by the representation of periodic
functions as the sums of sine and cosine waves. From the theory of Fourier series, it is known that a periodic function,

f(x), with period T, can be broken down into a sum of exponentials of the form
∑N
−N cne

i 2πnxT , with N being an
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integer greater than or equal to 1, and where the nth coefficients are given by cn = 1
T

∫ T/2
−T/2 f(x)ei

2πnx
T dx. For a

continuous function, this allows for the definition of the Fourier transform, F (ω), where F (ω) =
∫∞
−∞ f(x)eiωxdx,

with ω becoming the angular frequency by the change of variable ω = 2πn
T . This lends itself well to the analysis of

the signals obtained from the motions of coupled pendulums. By decomposing the complicated waveforms into their
much simpler frequency spectra, it becomes much simpler to characterize the oscillations with their normal modes.

IV. EXPERIMENTAL DESIGN AND PROCEDURE

1. Four springs with different spring constants were selected to be used in the experiment. Six (known) masses
were hung from each one, and the associated spring lengths were recorded.

2. Using the displacements for each spring, their respective spring constants were calculated.

3. One of the springs was attached to the pendulum set up. This set up consisted of two pendulums, attached
a bar of fixed height, with spring attachment points at identical distances along the length of each pendulum.
The set up was hooked up to a computer running Igor Pro, a software suite which would record the motions of
each pendulum along the x-y plane.

4. The masses attached to the pendulums were recorded.

5. The masses were allowed to oscillate in the even, and then odd modes for about a dozen cycles, with data being
recorded in Igor Pro.

6. The spring was removed and step 5 was repeated for three more mounting locations (identical ones simultaneously
on both pendulums).

7. Steps 5 and 6 were repeated for the 3 other springs.

8. After attaching one of the springs to the pendulums, only one pendulum was raised up and let go to create the
π
2 phase shift necessary for the beat frequencies. The results were again recorded in Igor Pro.

9. Step 8 was repeated for the 3 other mounting locations, and again at each location for a second spring.

V. ANALYSIS

Recorded Masses of Pendulums:
m1 = 2931 g
m2 = 2946 g

Sample Calculations for m

m =
∑n
i di
n

m = m1+m2

2

m = 2931g+2946g
2

m = 2939g

Mounting Location Length from Pivot Average Length

(±0.1cm) (±0.1cm)

1 13.4, 13.5 13.4

2 22.2, 22.1 22.2

3 30.5, 30.2 30.4

4 41.6, 41.6 41.6

(to mass) 55.9, 56.1 56.0

TABLE I: Measurements of the mounting lengths and the distance to the center of mass from the pivot point of each pendulum.
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Sample Calculations for Average Length using row 1 of Table I

d =
∑n
i di
n

d = 13.4cm+13.5cm
2

d = 13.4cm

Sample Calculations for ∆ Average Length using row 1 of Table I

∆d =
√

∆d2 × 2

∆d =
√

0.1cm2 × 2

∆d = 0.14cm

∆d ≈ 0.1cm

A. Determination of Spring Constants

Spring 1 Spring 2 Spring 3 Spring 4

Mass Displacement Mass Displacement Mass Displacement Mass Displacement

(g) (± 0.05 cm) (g) (± 0.05 cm) (g) (± 0.05 cm) (g) (± 0.05 cm)

50 27.6 50 34.3 50 31.6 50 34.9

70 30.8 70 35.0 100 31.9 90 35.7

90 34.1 90 35.6 150 32.2 130 36.4

110 37.3 110 36.2 200 32.5 180 37.3

130 40.6 130 36.8 280 33.0 1 220 38.1

– – 150 37.5 550 34.6 280 39.1

TABLE II: Masses applied and associated displacements to Springs 1-4

FIG. 1: Spring Displacement versus Force Applied using masses, for Springs 1-4.
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The spring constants for the 4 springs were determined by graphing the associated Displacement versus Force
Applied, the spring constants from least to most rigid was k1 = 6.0368 ± 0.0186 N

m , k2 = 31.188 ± 0.448 N
m , k4 =

53.64 ± 0.66 N
m , and last k3 = 163.29 ± 0.61 N

m .
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B. Normal Modes and Coupling Frequency

FIG. 2: Periodic Motion of the pendulums in an even mode
initial configuration. Spring 1 is mounted onto the 2nd
mounting position (`2).

FIG. 3: Fourier Analysis of Periodic Motion of the pendulums
(as seen in Fig.4) in an even mode initial configuration. Spring
1 is mounted onto the 2nd mounting position (`2).

Spring ` ν1 ∆ν1 ω1 ∆ω1 ν2 ∆ν2 ω2 ∆ω2 ω ∆ω % Error

No. (Hz) (Hz) ( rad
sec

) ( rad
sec

) (Hz) (Hz) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

)

1

1 0.662870 0.000571 4.164935 0.003588 0.661430 0.000618 4.155887 0.003883 4.160411 0.005287 0.7

2 0.659420 0.000650 4.143258 0.004084 0.655640 0.000776 4.119508 0.004876 4.131383 0.006360 1.4

3 0.656870 0.000687 4.127236 0.004317 0.657080 0.000680 4.128555 0.004273 4.127896 0.006074 1.5

4 0.663890 0.000603 4.171344 0.003789 0.665940 0.000627 4.184224 0.003940 4.177784 0.005466 0.3

2

1 0.654530 0.000821 4.112533 0.005158 0.657440 0.000716 4.130817 0.004499 4.121675 0.006845 1.6

2 0.661180 0.000635 4.154316 0.003990 0.661730 0.000596 4.157772 0.003745 4.156044 0.005472 0.8

3 0.660970 0.000641 4.152997 0.004028 0.659750 0.000717 4.145332 0.004505 4.149164 0.006043 1.0

4 0.663770 0.000706 4.170590 0.004436 0.664580 0.000502 4.175679 0.003154 4.173135 0.005443 0.4

3

1 0.673690 0.000987 4.232919 0.006202 0.672950 0.000876 4.228270 0.005504 4.230594 0.008292 1.0

2 0.675000 0.000860 4.241150 0.005404 0.676080 0.000975 4.247936 0.006126 4.244543 0.008169 1.3

3 0.668340 0.000694 4.199304 0.004361 0.668970 0.000685 4.203262 0.004304 4.201283 0.006127 0.3

4 0.666700 0.000744 4.189000 0.004675 0.666770 0.000792 4.189439 0.004976 4.189220 0.006828 0.0

4

1 0.665650 0.000912 4.182402 0.005730 0.660370 0.000757 4.149227 0.004756 4.165815 0.007447 0.6

2 0.661250 0.000684 4.154756 0.004298 0.660430 0.000716 4.149604 0.004499 4.152180 0.006222 0.9

3 0.670570 0.000582 4.213316 0.003657 0.669330 0.000732 4.205524 0.004599 4.209420 0.005876 0.5

4 0.660180 0.000725 4.148033 0.004555 0.660000 0.000744 4.146902 0.004675 4.147468 0.006527 1.0

TABLE III: Frequency values from Fourier Analysis of amplitude data for Pendulum 1 & 2 for Even modes.

From the even mode trials, where the pendulums are effectively uncoupled, the angular frequency of the pendulums,
ω0 was measured and found using a Fourier transform on the date collected. Using a Gaussian regression on the Fourier
Transform data, the peak frequency was able to be determined and all the values averaged over the 16 trials and was
found to be 4.171126 ± 0.023111 rad

sec . The calculated error ranged from 0-1.5% of the theoretically calculated value

of 4.19 rad
sec .

FIG. 4: Periodic Motion of the pendulums in an odd mode ini-
tial configuration. Spring 1 is mounted onto the 2nd mounting
position (`2).

FIG. 5: Fourier Analysis of Periodic Motion of the pendulums
(as seen in Fig.4) in an odd mode initial configuration. Spring
1 is mounted onto the 2nd mounting position (`2).
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Spring ` ν1 ∆ν1 ω1 ∆ω1 ν2 ∆ν2 ω2 ∆ω2 ω ∆ω

No. (Hz) (Hz) ( rad
sec

) ( rad
sec

) (Hz) (Hz) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

)

1

1 0.673540 0.000990 4.231977 0.006220 0.673560 0.000927 4.232102 0.005825 4.232039 0.008522

1 0.682610 0.001660 4.288965 0.010430 0.684070 0.001700 4.298139 0.010681 4.293552 0.014929

1 0.693500 0.001160 4.357389 0.007288 0.694430 0.001120 4.363232 0.007037 4.360311 0.010131

1 0.699550 0.000239 4.395402 0.001502 0.698870 0.000215 4.391130 0.001351 4.393266 0.002020

2

1 0.694050 0.000999 4.360845 0.006277 0.694930 0.000910 4.366374 0.005718 4.363609 0.008491

2 0.711820 0.002130 4.472497 0.013383 0.701240 0.000814 4.406021 0.005115 4.439259 0.014327

3 0.763290 0.003880 4.795893 0.024379 0.770230 0.003760 4.839498 0.023625 4.817695 0.033948

4 0.791650 0.001230 4.974084 0.007728 0.791090 0.001160 4.970565 0.007288 4.972324 0.010623

3

1 0.771660 0.000668 4.848483 0.004197 0.774670 0.001180 4.867395 0.007414 4.857939 0.008520

2 0.880020 0.001590 5.529329 0.009990 0.877880 0.001560 5.515883 0.009802 5.522606 0.013996

3 1.022000 0.001430 6.421415 0.008985 1.023100 0.001270 6.428327 0.007980 6.424871 0.012017

4 1.318600 0.002770 8.285008 0.017404 1.321900 0.002250 8.305743 0.014137 8.295375 0.022423

4

1 0.703760 0.000541 4.421854 0.003399 0.699530 0.000408 4.395277 0.002564 4.408566 0.004258

2 0.760330 0.001170 4.777294 0.007351 0.764060 0.002090 4.800731 0.013132 4.789012 0.015050

3 0.809020 0.001130 5.083223 0.007100 0.806960 0.000954 5.070279 0.005994 5.076751 0.009292

4 0.928300 0.001230 5.832681 0.007728 0.928270 0.001310 5.832492 0.008231 5.832587 0.011291

TABLE IV: Frequency values from Fourier Analysis of amplitude data for Pendulum 1 & 2 for Odd modes.

From the odd mode trials, where the pendulums coupled, the angular frequency of the pendulums, ω was measured
and found using a Fourier transform on the date collected. Using a gaussian regression on the Fourier Transform
data, the peak frequency was able to be determined, then ω2vsk was plotted in Fig.6, keeping the mounting location
` constant for the 4 data sets plotted, as well as ω2vs`2 in Fig.7 plotted keeping the spring constant k constant for
the 4 data sets plotted. The lines of best fit were found, and the slopes were compared to the theoretical values.

Sample Calculations for ω1 using row 1 of Table III

ν = 1
2πω

ω1 = 2π × ν1

ω1 = 2π × 0.662870

ω1 = 4.164935

Sample Calculations for ∆ω1 using row 1 of Table III

∆ω1 = 2π ×∆ν1

∆ω1 = 2π × 0.000571

∆ω1 = 0.003588

Sample Calculations for ω using row 1 of Table III

ω =
∑n
i di
n

ω = 4.164935+4.155887
2

ω = 4.160411

Sample Calculations for ∆ω using row 1 of Table III

∆d =
√

∆ω2
1 + ∆ω2

2

∆d =
√

0.0035882 + 0.0038832

∆d = 0.005287
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Sample Calculations for Theoretical ω0 using row 1 of Table III, using g = 9.81 m
s2
, L = 0.56 m

ω0 =
√

g
L

ω0 =
√

9.81
0.56

ω0 = 4.19

Sample Calculations for Percent Error using row 1 of Table III

%Error = |Theoretical−Experimental|
Theoretical × 100%

%Error = |ω0−ω|
ω0

× 100%

%Error = |4.19−4.160411|
4.19 × 100%

%Error = 0.706%

%Error ≈ 0.7%

Calculations for ω0 using Table III

ω0 =
∑n
i di
n

ω0 =

4.160411 + 4.131383 + 4.127896 + 4.177784 + 4.121675 + 4.156044 + 4.149164 + 4.173135+

4.230594 + 4.244543 + 4.201283 + 4.189220 + 4.165815 + 4.152180 + 4.209420 + 4.147468
16

ω0 = 4.171126

Calculations for ∆ω0 using Table III

∆ω0 =
√∑n

i ∆ω2
i

∆ω0 =

√
0.0052872 + 0.0063602 + 0.0060742 + 0.0054662 + 0.0068452 + 0.0054722 + 0.0060432 + 0.0054432+

0.0082922 + 0.0081692 + 0.0061272 + 0.0068282 + 0.0074472 + 0.0062222 + 0.0058762 + 0.0065272

∆ω0 = 0.023111
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FIG. 6: Angular frequency of Odd modes squared (ω2) versus Spring Constant (k) while keeping mounting position (`) constant
over all 4 mounting positions.

FIG. 7: Angular frequency of Odd modes squared (ω2) versus Mounting Position squared (`2) while keeping the Spring Constant
(k) constant for all 4 springs.
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` ω2

k
∆ω2

k
Theoretical ω2

k
∆ Theoretical ω2

k
% Error

(m) (kg−1) (kg−1) (kg−1) (kg−1)

0.134 0.035881 0.000469 3.90 ×10−2 1.09 ×10−2 8.0

0.222 0.078078 0.000863 1.07 ×10−1 6.85 ×10−3 27.0

0.304 0.14149 0.000796 2.01 ×10−1 5.29 ×10−3 29.6

0.416 0.29815 0.000119 3.76 ×10−1 4.23 ×10−3 20.7

TABLE V: Tabulated Results from Fig.6, ω2 versus k, and calculated theoretical values for the modes for springs mounted at
the various mounting levels and associated error values.

Sample Calculations for Theoretical ω2

k
using row 1 of Table V, using m = 2.939 kg, L = 0.56 m

ω2 = ω2
0 + 2·k`2

mL2

slope = ω2

k = 2·`2
mL2

ω2

k = 2·0.1342

2.939×0.562

ω2

k = 0.03896
ω2

k ≈ 3.90× 10−2kg−1

Sample Calculations for ∆ Theoretical ω2

k
using row 1 of Table V, using L = 0.56 m

∆Theoreticalω
2

k =
√

(∆`
` )2 × 2 + (∆L

L )2 × 2

∆Theoreticalω
2

k =
√

( 0.001
0.134 )2 × 2 + ( 0.001

0.56 )2 × 2

∆Theoreticalω
2

k = 0.01085

∆Theoreticalω
2

k ≈ 1.09× 10−2kg−1

Sample Calculations for Percent Error using row 1 of Table V

%Error = |Theoretical−Experimental|
Theoretical × 100%

%Error = |3.90×10−2−0.035881|
3.90×10−2 × 100%

%Error = 7.997%

%Error ≈ 8.0%

k ω2

`2
∆ω2

`2
Theoretical Value ∆ Theoretical Value % Error

(m) ( N
kg·m3 ) ( N

kg·m3 ) ( N
kg·m3 ) ( N

kg·m3 )

6.0368 8.0307 0.295 1.31 ×101 3.98 ×10−3 38.7

31.188 37.222 0.583 6.77 ×101 1.58 ×10−2 45.0

53.64 91.793 0.546 1.16 ×102 1.26 ×10−2 20.9

163.29 262.03 1.26 3.54 ×102 4.51 ×10−3 26.0

TABLE VI: Tabulated Results from Fig.7, ω2 versus `2, and calculated theoretical values for the modes for the various spring
constants and associated error values.

From the graphs of ω2vsk in Fig.6 and ω2vs`2 in Fig.7, comparing to theoretical values there was a significant
amount of error, ranging from about 8.0% to as much as 45%. During the experiment, there was some unstable
oscillations transverse to the normal motion of the pendulum, due to the stiffness of the spring and unstable mounting
(the spring just hooked onto the mounting locations rather than being fixed strongly to the bracket) allowing for
bumping and slipping actions during the oscillations. Doing more trials with more spring may have been able to help
with the regression to give a more accurate set of points for the line of best fit.
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Sample Calculations for Theoretical ω2

`2
using row 1 of Table VI, using m = 2.939 kg, L = 0.56 m

ω2 = ω2
0 + 2·k`2

mL2

slope = ω2

`2 = 2·k
mL2

ω2

`2 = 2·6.0368
2.939×0.562

ω2

`2 = 13.0997
ω2

`2 ≈ 1.31× 101 N
kg·m3

Sample Calculations for ∆ Theoretical ω2

`2
using row 1 of Table VI, using ∆k1 = 0.0186 N

m

∆Theoreticalω
2

`2 =
√

(∆k
k )2 + (∆L

L )2 × 2

∆Theoreticalω
2

`2 =
√

( 0.0186
6.0368 )2 + ( 0.001

0.56 )2 × 2

∆Theoreticalω
2

`2 = 3.98× 10−3 N
kg·m3

Sample Calculations for Percent Error using row 1 of Table VI

%Error = |Theoretical−Experimental|
Theoretical × 100%

%Error = |13.1−8.0307|
13.1 × 100%

%Error = 38.697%

%Error ≈ 38.7%

C. Beat Frequency

FIG. 8: Fourier Analysis of beat frequency on Pendulum 1
with Spring 1 (k = 6.0368 N

m
) in mounting position 4 (` =

0.416).

FIG. 9: Fourier Analysis of beat frequency on Pendulum 2
with Spring 1 (k = 6.0368 N

m
) in mounting position 4 (` =

0.416).
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FIG. 10: Fourier Analysis of beat frequency on Pendulum 1
with Spring 4 (k = 53.64 N

m
) in mounting position 1 (` =

0.134).

FIG. 11: Fourier Analysis of beat frequency on Pendulum 2
with Spring 4 (k = 53.64 N

m
) in mounting position 1 (` =

0.134).

k ` ν1a ∆ν1a ν2a ∆ν2a ν1b ∆ν1b ν2b ∆ν2b

(N
m

) (m) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

6.0368 0.416 0.66063 0.000178 0.70607 0.000163 0.66239 0.000594 0.70377 0.000489

53.64 0.134 0.66021 0.000148 0.69863 0.00388 0.66224 0.000708 0.69346 0.000008

TABLE VII: Tabulated Results from Fourier Analysis of Beat Frequencies within the Couples Oscillator system for the two
springs in the two set mounting positions.

ω1a ∆ω1a ω2a ∆ω2a ω1b ∆ω1b ω2b ∆ω2b ω1 ∆ω1 ω2 ∆ω2

( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

) ( rad
sec

)

4.15086 0.00112 4.43637 0.00102 4.16192 0.00373 4.42192 0.00307 4.15639 0.00390 4.42914 0.00324

4.14822 0.00093 4.38962 0.02438 4.16098 0.00445 4.35714 0.00005 4.15460 0.00454 4.37338 0.02438

TABLE VIII: Tabulated Results from Fourier Analysis of Beat Frequencies within the Couples Oscillator system for the two
springs in the two set mounting positions.

Sample Calculations for ω1a in row 1 of Table VIII, using row 1 of Table VII

ν = 1
2πω

ω1a = 2π × ν1a

ω1a = 2π × 0.66063

ω1a = 4.15086

Sample Calculations for ∆ω1a in row 1 of Table VIII, using row 1 of Table VII

∆ω1a = 2π ×∆ν1a

∆ω1a = 2π × 0.000178

∆ω1a = 0.00112
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Sample Calculations for ω1 using row 1 of Table VIII

ω1 =
∑n
i di
n

ω1 = ω1a+ω1b

2

ω1 = 4.15086+4.16192
2

ω1 = 4.15639

Sample Calculations for ∆ω1 using row 1 of Table VIII

∆ω1 =
√

∆ω2
1a + ∆ω2

1b

∆ω1 =
√

0.001122 + 0.003732

∆ω1 = 0.00390

k ` ω1 − ω2 Theoretical ω1 − ω2 Theoretical ∆(ω1 − ω2) % Error

(N
m

) (m) ( rad
sec

) ( rad
sec

) ( rad
sec

)

6.0368 0.416 0.27275 0.272 0.00762 0.3

53.6400 0.134 0.21878 0.251 0.01732 12.8

TABLE IX: The difference in dominant Frequencies, the Beat Frequency, and comparison to their Theoretical Values.

By using Fourier Analysis on the trials to find the beat frequency of the system, we were able to calculate, for
two separate trials using a weak spring and a medium strength spring. Using by calculating theoretical values using
∆ω = ω1 − ω2 as the second term in Eq.8, the % Error was quite small (0.3%) for the trial with the weaker spring,
but was larger with the medium strength spring (12.8%).

Sample Calculations for Theoretical ω1 − ω2 using row 1 of Table IX, using ω0 = 4.171126 rad
sec

, m = 2.939 kg,
L = 0.56 m

ω1 − ω2 = k`2

ω0mL2

ω1 − ω2 = 6.0368·0.4162

4.171126·2.939·0.562

ω1 − ω2 = 0.272

Sample Calculations for Theoretical ∆(ω1 − ω2) using row 1 of Table IX, using ω0 = 4.171126 rad
sec

, m = 2.939
kg, L = 0.56 m

∆(ω1 − ω2) =
√

(∆k
k )2 + (∆`

ell )
2 × 2 + (∆ω0

ω0
)2 + (∆L

L )2 × 2

∆(ω1 − ω2) =
√

( 0.0186
6.0368 )2 + ( 0.001

0.416 )2 × 2 + ( 0.023111
4.171126 )2 + ( 0.001

0.56 )2 × 2

∆(ω1 − ω2) = 0.00762 radsec

Sample Calculations for Percent Error using row 1 of Table IX

%Error = |Theoretical−Experimental|
Theoretical × 100%

%Error = |0.272−0.27275|
0.272 × 100%

%Error = 0.2757%

%Error ≈ 0.3%
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VI. CONCLUSION

The spring constants for the 4 springs were determined by graphing the associated Displacement versus Force
Applied, the spring constants from least to most rigid was k1 = 6.0368 ± 0.0186 N

m , k2 = 31.188 ± 0.448 N
m , k4 =

53.64 ± 0.66 N
m , and last k3 = 163.29 ± 0.61 N

m .
From the even mode trials, where the pendulums are effectively uncoupled, the angular frequency of the pendulums,

ω0 was measured and found using a Fourier transform on the date collected. Using a Gaussian regression on the Fourier
Transform data, the peak frequency was able to be determined and all the values averaged over the 16 trials and was
found to be 4.171126 ± 0.023111 rad

sec . The calculated error ranged from 0-1.5% of the theoretically calculated value

of 4.19 rad
sec . From the odd mode trials, where the pendulums coupled, the angular frequency of the pendulums, ω

was measured and found using a Fourier transform on the date collected. Using a gaussian regression on the Fourier
Transform data, the peak frequency was able to be determined, then ω2vsk was plotted in Fig.6, keeping the mounting
location ` constant for the 4 data sets plotted, as well as ω2vs`2 in Fig.7 plotted keeping the spring constant k constant
for the 4 data sets plotted. The lines of best fit were found, and the slopes were compared to the theoretical values.
From the graphs of ω2vsk in Fig.6 and ω2vs`2 in Fig.7, comparing to theoretical values there was a significant amount
of error, ranging from about 8.0% to as much as 45%. During the experiment, there was some unstable oscillations
transverse to the normal motion of the pendulum, due to the stiffness of the spring and unstable mounting (the spring
just hooked onto the mounting locations rather than being fixed strongly to the bracket) allowing for bumping and
slipping actions during the oscillations. Doing more trials with more spring may have been able to help with the
regression to give a more accurate set of points for the line of best fit.

By using Fourier Analysis on the trials to find the beat frequency of the system, we were able to calculate, for
two separate trials using a weak spring and a medium strength spring. Using by calculating theoretical values using
∆ω = ω1 − ω2 as the second term in Eq.8, the % Error was quite small (0.3%) for the trial with the weaker spring,
but was larger with the medium strength spring (12.8%).
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