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I. ABSTRACT

The Fourier Series is an extremely useful tool in the analysis of periodic signals. This report presents a comparison
between theoretically and experimentally determined values for the Fourier coefficients of eight common waveforms.
The amplitudes are found to differ between 0% and 18.8%. It is understood that some of the discrepancies found
between the two sets of values come from fluctuations and the approximations made in the signal generator to create
the waveforms (especially for coefficients which were relatively small at higher harmonics compared to the fundamental
harmonics), and through the rectification process used on some of the waveforms.

II. INTRODUCTION

The core of Fourier signal analysis lies in the fact that all functions exhibiting periodic behaviour over time can
be decomposed into sums of sine and cosine functions. This property greatly simplifies the analysis of complicated
waveforms, and allows for straightforward identification of properties such as harmonic frequencies and normal modes
present in signals. This is discussed in detail in paper [5] on the use of Fourier Transforms in analyzing periodic
functions. This paper, however, will focus on the closely related method of Fourier Series, with applications to a
variety of common waveforms. The so-called Fourier coefficients of each signal will be calculated, and compared to
their experimental counter-parts.

III. THEORETICAL BACKGROUND

Any continuous, periodic function f(t), with period T has the property that:

∫ T

0

f(t)dt =

∫ k+T

k

f(t)dt (1)

Where k is any real valued constant.
We then work under the assumption that it can be expressed in the form:

f(t) =

∞∑
n=0

an cos(nt) + bn sin(nt) (2)

This is motivated in part by the theory of Fourier Transforms. Now, we compute the an coefficients by multiplying
the above expression by cos(mt), where m is an index like n, and integrating over t.

∫ 2π

0

f(t) cos(mt)dt =

∞∑
n=0

[an

∫ 2π

0

cos(nt) cos(mt)dt+ bn

∫ 2π

0

sin(nt) cos(mt)dt] (3)

Since sin and cos are odd and even respectively, the second term will disappear. Furthermore, by the orthogonality
of cosines, the first term will only be non-zero under the condition that n = m. This allows us to write:

an

∫ 2π

0

cos(mt) cos(mt)dt =

∫ 2π

0

f(t) cos(mt)dt (4)

So,



2

an =
1

π

∫ 2π

0

f(t) cos(nt)dt (5)

Since cos(nt) = 1 at n = 0, we can write:

a0 =
1

π

∫ 2π

0

f(t)dt (6)

Similarly, for the bn coefficients, we multiply by sin instead of cosine. Once again the odd-even integration rule is
used along with the orthogonality of sines to obtain the expression:

an =
1

π

∫ 2π

0

f(t) sin(nt)dt (7)

In this case, however, b0 = 0 since sin(nt) = 0 at n = 0.
With this last piece of information, it is possible to compute the Fourier Series of the periodic signals that will be

analyzed in this paper.

IV. EXPERIMENTAL DESIGN AND PROCEDURE

A computer fitted with an oscilloscope card, and running a LabView program was used to acquire data on the
eight waveforms examined in this experiment, and run peak analysis on the Fourier spectrum. These waveforms were
created by an external signal generator, which was hooked up to an oscilloscope for visual confirmation of the signal.
By hooking up the leads from the generator to the computer, it was possible to create eight waveforms through
differentiation and rectification of the signal. These were:

1. Square Wave

2. Sawtooth (right angle triangle) Wave

3. Triangle (pyramid) Wave

4. Dirac Delta Signal

5. Alternating Polarity Dirac Delta Signal

6. Half-Wave Rectified Sine Wave

7. Half-Wave Rectified Sawtooth Wave

8. Full-Wave Rectified Sine Wave

V. ANALYSIS

For calculation purposes, all waves were assumed to have a maximum amplitude of 1, except that of the Up-Up
and Up-Down Dirac Delta waves which by definition, have spikes of infinite amplitude.

A. Square Wave

We will start with deriving the values for the coefficients of the Fourier Series for a square wave, a0, an, and bn.
Using (6), (5), and (7):

FIG. 1: Representation of a Square wave, Ref. [1]
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an = 1
π

∫ 2π

0
f(t) cos(nt)dt

a0 = 1
π [
∫ π
0

1 · dt+
∫ 2π

π
−1 · dt]

a0 = 1
π [t|π0 − t|2ππ ]

a0 = 1
π [π − 0− 2π + π]
a0 = 0

an = 1
π

∫ 2π

0
f(t) cos(nt)dt

an = 1
π [
∫ π
0

1 · cos(nt)dt+
∫ 2π

π
−1 · cos(nt)dt]

an = 1
π [ 1n sin(nt)|π0 − 1

n sin(nt)|2ππ ]

an = 1
π

1
n [��

��: 0
sin(nπ)−���: 0

sin 0−���
��: 0

sin(2nπ) +��
��: 0

sin(nπ)]
an = 0

bn = 1
π

∫ 2π

0
f(t) sin(nt)dt

bn = 1
π [
∫ π
0

1 · sin(nt)dt+
∫ 2π

π
−1 · sin(nt)dt]

bn = 1
π [− 1

n cos(nt)|π0 + 1
n cos(nt)|2ππ ]

bn = 1
π

1
n [− cos(nπ) +���

�: 1
cos(0) +���

��: 1
cos(2nπ)− cos(nπ)]

bn = 1
π

2
n [1 + (−1)n]

bn =

{
0, if n is even
4
nπ , if n is odd

We can then determine that the Fourier Series for a Square wave to be:

f(t) =

∞∑
nodd

4

nπ
sin(nt) (8)

FIG. 2: Recorded line spectra of the generated 100 Hz Square Wave
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Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

103.8 1.4423 1 0 1.2732 1.2732 1.2732 –

310.3 0.4952 3 0 0.4244 0.4244 0.4371 3.0

517.8 0.2871 5 0 0.2546 0.2546 0.2535 0.5

724.3 0.2158 7 0 0.1819 0.1819 0.1905 4.7

932.1 0.1555 9 0 0.1415 0.1415 0.1373 3.0

1138.5 0.1380 11 0 0.1157 0.1157 0.1218 5.2

1346.0 0.1045 13 0 0.0979 0.0979 0.0923 5.8

TABLE I: Square wave measured data and comparison to theoretical values.

The measured coefficients for the Square wave taken from the line spectrum graph in Fig.2 once normalized with
the first fundamental term agree with the calculated theoretical Fourier series coefficients, only fluctuating from 0.5%
to 5.8% difference between the 1st and 13th harmonics. The frequency locations of the coefficients also agree with
the theory where they are only present on odd harmonics as defined in the Fourier series for a Square wave in (8).
The frequencies of the harmonics are, agree with only slight variation with the theoretical value of 100Hz output by
the waveform generator. Some of the discrepancies may be from the slight flaws or variation in timings made by the
waveform generator or background noise in the waveform output which may skew results unpredictably.

Sample Calculations for bn using Table I row 1, for n = 1

bn = 4
nπ

b1 = 4
π

b1 = 1.2732

Sample Calculations for NormalizedAmplitude using Table I row 2

Annormalized
= A× c1

A1

Annormalized
= 0.4952× 1.2732

1.4423

Annormalized
= 0.4371

Sample Calculations for PercentDifference using Table I row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.4244−0.4371|
0.4244 × 100%

%Diff = 2.99%

%Diff ≈ 3.0%

B. Sawtooth Wave

FIG. 3: Representation of a Sawtooth wave, Ref. [1]

a0 = 0

an = 0

bn = 2
nπ

The Fourier Series for a Sawtooth wave is then:

f(t) =

∞∑
n=1

2

nπ
sin(nt) (9)
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FIG. 4: Recorded line spectra of the generated 100 Hz Sawtooth Wave

Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

113.0 0.9239 1 0 0.6366 0.6366 0.6366 –

226.0 0.4641 2 0 0.3183 0.3183 0.3198 0.5

338.7 0.3058 3 0 0.2122 0.2122 0.2107 0.7

452.0 0.2276 4 0 0.1592 0.1592 0.1568 1.5

564.7 0.1791 5 0 0.1273 0.1273 0.1234 3.1

678.1 0.1516 6 0 0.1061 0.1061 0.1045 1.5

790.4 0.1263 7 0 0.0909 0.0909 0.0870 4.3

903.9 0.1096 8 0 0.0796 0.0796 0.0755 5.1

1016.5 0.0946 9 0 0.0707 0.0707 0.0652 7.9

1130.0 0.0864 10 0 0.0637 0.0637 0.0595 6.5

1242.2 0.0769 11 0 0.0579 0.0579 0.0530 8.5

1355.8 0.0675 12 0 0.0531 0.0531 0.0465 12.3

1468.2 0.0615 13 0 0.0490 0.0490 0.0424 13.5

TABLE II: Sawtooth wave measured data and comparison to theoretical values.

The measured coefficients for the Sawtooth wave taken from the line spectrum graph in Fig.4 once normalized with
the first fundamental term agree with the calculated theoretical Fourier series coefficients, only fluctuating from 0.5%
to 13.5% difference between the 1st and 13th harmonics with increasing error at higher harmonics. This increasing
error may be due to the decreasing amplitude of the coefficients which could then be more prone to any fluctuations
as a small change in the measured coefficient amplitude in the Sawtooth wave line spectrum (Fig.4) and these changes
would be relatively large for smaller amplitudes. The frequency locations of the coefficients also agree with the theory
if the waveform generator was outputting a the Sawtooth wave with a period of approximately 113 Hz as the data
suggests.

Sample Calculations for bn using Table II row 1, for n = 1

bn = 2
nπ

b1 = 2
π

b1 = 0.6366



6

Sample Calculations for NormalizedAmplitude using Table II row 2

Annormalized
= A× c1

A1

Annormalized
= 0.464× 0.6366

0.924

Annormalized
= 0.3198

Sample Calculations for PercentDifference using Table II row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.3183−0.3198|
0.3183 × 100%

%Diff = 0.47%

%Diff ≈ 0.5%

C. Triangle Wave

FIG. 5: Representation of a Triangle wave, Ref. [1]

a0 = 0

an =

{
0, if n is even

8
(nπ)2 , if n is odd

bn = 0

The Fourier Series for a Triangle wave is then:

f(t) =

∞∑
nodd

8

(nπ)2
cos(nt) (10)

FIG. 6: Recorded line spectra of the generated 100 Hz Triangle Wave
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Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

103.9 0.7568 1 0.8106 0 0.8106 0.8106 –

311.2 0.0915 3 0.0901 0 0.0901 0.0980 8.8

518.2 0.0318 5 0.0324 0 0.0324 0.0341 5.2

722.6 0.0147 7 0.0165 0 0.0165 0.0157 4.8

933.4 0.0100 9 0.0100 0 0.0100 0.0107 6.7

1140.2 0.0068 11 0.0067 0 0.0067 0.0073 8.8

1348.0 0.0036 13 0.0048 0 0.0048 0.0039 18.8

TABLE III: Triangle wave measured data and comparison to theoretical values.

The measured coefficients for the Triangle wave taken from the line spectrum graph in Fig.6 once normalized with
the first fundamental term agree with the calculated theoretical Fourier series coefficients, but are affected by the small
coefficients due to the 1

n2 relationship differing by 4.8% to 18.8%. The error is the same as that mentioned previously,
with the granularity of the measurements, small fluctuations affect small amplitude co effects to a larger degree. The
frequency locations of the coefficients also agree with the waveform generator theoretical output frequency of close to
100Hz.

Sample Calculations for an using Table III row 1, for n = 1

an = 8
(nπ)2

a1 = 8
(π)2

a1 = 0.8106

Sample Calculations for NormalizedAmplitude using Table III row 2

Annormalized
= A× c1

A1

Annormalized
= 0.0915× 0.8106

0.7568

Annormalized
= 0.0980

Sample Calculations for PercentDifference using Table III row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.0901−0.0980|
0.0901 × 100%

%Diff = 8.76%

%Diff ≈ 8.8%

D. Up-Up Dirac Delta Wave, 2π-periodic

FIG. 7: Representation of a Up-Up Dirac Delta wave, also
known as Dirac’s Comb, Ref. [1]

a0 = 1
π

an = 2
π

bn = 0

The Fourier Series for a Up-Up Dirac Delta wave is then:
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f(t) =
1

π
+

∞∑
n=1

2

π
cos(nt) (11)

FIG. 8: Recorded line spectra of the generated 100 Hz Up-Up Dirac Delta Wave

Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

113.0 0.1260 1 0.6366 0 0.6366 0.6366 –

226.1 0.1258 2 0.6366 0 0.6366 0.6356 0.2

338.9 0.1252 3 0.6366 0 0.6366 0.6328 0.6

451.9 0.1248 4 0.6366 0 0.6366 0.6306 0.9

564.8 0.1243 5 0.6366 0 0.6366 0.6278 1.4

678.0 0.1319 6 0.6366 0 0.6366 0.6662 4.6

790.8 0.1227 7 0.6366 0 0.6366 0.6199 2.6

904.0 0.1287 8 0.6366 0 0.6366 0.6504 2.2

1016.7 0.1208 9 0.6366 0 0.6366 0.6104 4.1

1129.5 0.1296 10 0.6366 0 0.6366 0.6547 2.8

1242.6 0.1285 11 0.6366 0 0.6366 0.6490 1.9

1356.3 0.1267 12 0.6366 0 0.6366 0.6403 0.6

1468.5 0.1257 13 0.6366 0 0.6366 0.6353 0.2

TABLE IV: Up-Up Dirac Delta wave measured data and comparison to theoretical values.

The measured coefficients for the Up-Up Dirac Delta taken from the line spectrum graph in Fig.8 once normalized
with the first fundamental term agree with the calculated theoretical Fourier series coefficients, quite well, only
differing between 0.2% to 4.6% quite consistently. Any discrepancy could be due to the fact that the generated wave
is not a perfect Dirac Delta function at its pulses, but they have some defined hight and width which may change the
coefficients to agree closer to that of a pulse train Fourier series representation.

Sample Calculations for an using Table IV row 1, for n = 1

an = 2
π

a1 = 2
π

a1 = 0.6366
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Sample Calculations for NormalizedAmplitude using Table IV row 2

Annormalized
= A× c1

A1

Annormalized
= 0.1258× 0.6366

0.1260

Annormalized
= 0.6356

Sample Calculations for PercentDifference using Table IV row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.6366−0.6356|
0.6366 × 100%

%Diff = 0.16%

%Diff ≈ 0.2%



10

E. Up-Down Dirac Delta Wave, 2π-periodic

FIG. 9: Representation of a Up-Down Dirac Delta wave, Ref.
[1]

a0 = 0

an =

{
0, if n is even
4
π , if n is odd

bn = 0

The Fourier Series for a Up-Down Dirac Delta wave is then:

f(t) =

∞∑
nodd

4

π
cos(nt) (12)

FIG. 10: Recorded line spectra of the generated 100 Hz Up-Down Dirac Delta Wave

Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

103.9 0.0326 1 1.2732 0 1.2732 1.2732 –

311.2 0.0333 3 1.2732 0 1.2732 1.3005 2.1

518.3 0.0335 5 1.2732 0 1.2732 1.3095 2.9

726.0 0.0329 7 1.2732 0 1.2732 1.2875 1.1

933.5 0.0326 9 1.2732 0 1.2732 1.2737 0.0

1140.5 0.0325 11 1.2732 0 1.2732 1.2710 0.2

1348.0 0.0322 13 1.2732 0 1.2732 1.2570 1.3

TABLE V: Up-Down Dirac Delta wave measured data and comparison to theoretical values.

The measured coefficients for the Up-Down Dirac Delta wave taken from the line spectrum graph in Fig.10 once
normalized with the first fundamental term agree with the calculated theoretical Fourier series coefficients also agrees
quite well, only differing between 0.0% to 2.9% quite consistently. Any discrepancy could also, as for the Up-Up Dirac
Delta wave, could be due to the fact that the generated wave is not a perfect Dirac Delta function at its pulses.



11

Sample Calculations for an using Table V row 1, for n = 1

an = 4
π

a1 = 4
π

a1 = 1.2732

Sample Calculations for NormalizedAmplitude using Table V row 2

Annormalized
= A× c1

A1

Annormalized
= 0.0333× 1.2732

0.0326

Annormalized
= 1.3005

Sample Calculations for PercentDifference using Table V row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |1.2732−1.3005|
1.2732 × 100%

%Diff = 2.14%

%Diff ≈ 2.1%

F. Half-Wave Rectified Sine Wave

FIG. 11: Representation of a Half-Wave Rectified Sine wave,
Ref. [1]

a0 = 1
π

an =

{
2

π(1−n2) , if n is even

0, if n is odd

b1 = 1
2

bn = 0

The Fourier Series for a Half-Wave Rectified Sine wave is then:

f(t) =
1

π
+

1

2
sin(t) +

∞∑
neven

2

π(1− n2)
cos(nt) (13)
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FIG. 12: Recorded line spectra of the generated 100 Hz Half-Wave Rectified Sine Wave

Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

103.9 0.6210 1 0 0.5 0.5 0.5 –

207.7 0.2420 2 -0.2122 0 0.2122 0.1948 8.2

414.5 0.0540 4 -0.0424 0 0.0424 0.0435 2.4

622.1 0.0227 6 -0.0182 0 0.0182 0.0183 0.5

829.5 0.0132 8 -0.0101 0 0.0101 0.0106 5.2

1037.0 0.0071 10 -0.0064 0 0.0064 0.0057 11.1

1244.340 0.0054 12 -0.0045 0 0.0045 0.0043 2.3

1452.260 0.0037 14 -0.0033 0 0.0033 0.0030 8.7

TABLE VI: Half-Wave Rectified Sine wave measured data and comparison to theoretical values.

The measured coefficients for the Half-Wave Rectified Sine wave taken from the line spectrum graph in Fig.12
once normalized with the first fundamental term agree with the calculated theoretical Fourier series coefficients, only
fluctuating from 0.5% to 11.1%. The frequency locations of the coefficients also agree with the theory where they are
only present on even harmonics and the the first harmonic as defined in the Fourier series for a Half-Wave Rectified
Sine wave in (13). There are some noticeable, yet extremely tiny peaks on odd harmonic locations in the Line
Spectrum Fig. 12 which may be due to small inaccuracies in the waveform near the boundary of the function.

Sample Calculations for an using Table VI row 1, for n = 2

an = 2
π(1−n2)

a2 = 2
π(1−22)

a2 = −0.2122

Sample Calculations for NormalizedAmplitude using Table VI row 2

Annormalized
= A× c1

A1

Annormalized
= 0.2420× 0.5

0.6210

Annormalized
= 0.1948
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Sample Calculations for PercentDifference using Table VI row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.2122−0.1948|
0.2122 × 100%

%Diff = 8.1998%

%Diff ≈ 8.2%

G. Half-Wave Rectified Sawtooth Wave

FIG. 13: Representation of a Half-Wave Rectified Sawtooth
wave, Ref. [1]

a0 = 1
4

an =

{
0, if n is even
−2

(nπ)2 , if n is odd

bn = (−1)n+1

nπ

The Fourier Series for a Half-Wave Rectified Sawtooth wave is then:

f(t) =
1

4
+

∞∑
nodd

−2

(nπ)2
cos(nt) +

∞∑
n=1

(−1)n+1

nπ
sin(nt) (14)

FIG. 14: Recorded line spectra of the generated 100 Hz Half-Wave Rectified Sawtooth Wave
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Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

113.0 0.5733 1 -0.2026 0.3183 0.3773 0.3583 –

226.0 0.2411 2 0 -0.1592 0.1592 0.1507 5.3

338.7 0.1650 3 -0.0225 0.1061 0.1085 0.1031 4.9

452.0 0.1173 4 0 -0.0796 0.0796 0.0733 7.9

564.8 0.0953 5 -0.0081 0.0637 0.0642 0.0596 7.1

678.0 0.0779 6 0 -0.0531 0.0531 0.0487 8.3

790.5 0.0673 7 -0.0041 0.0455 0.0457 0.0420 7.9

904.0 0.0650 8 0 -0.0398 0.0398 0.0406 2.1

1016.6 0.0512 9 -0.0025 0.0354 0.0355 0.0320 9.8

1130.0 0.0466 10 0 -0.0318 0.0318 0.0291 8.4

1242.3 0.0420 11 -0.0017 0.0289 0.0290 0.0263 9.4

1355.9 0.0400 12 0 -0.0265 0.0265 0.0250 5.8

1468.4 0.0382 13 -0.0012 0.0245 0.0245 0.0239 2.6

TABLE VII: Half-Wave Rectified Sawtooth wave measured data and comparison to theoretical values.

The measured coefficients for the Half-Wave Rectified Sawtooth wave taken from the line spectrum graph in Fig.14
once normalized with the first fundamental term agree with the calculated theoretical Fourier series coefficients, only
fluctuating from 2.1% to 9.8%. The fundamental frequency agrees with the our data from part B of the lab, as the
non-rectified sawtooth wave also had a fundamental frequency of 113Hz which is close to the specified 100Hz from
the waveform generator.

Sample Calculations for an and bn using Table VII row 1, for n = 1

an = −2
(nπ)2

a1 = −2
(π)2

a1 = −0.2026

bn = (−1)n+1

nπ

b1 = (−1)1
π

b1 = 0.3183

Sample Calculations for NormalizedAmplitude using Table VII row 2

Annormalized
= A× c1

A1

Annormalized
= 0.2411× 0.3583

0.5733

Annormalized
= 0.1507

Sample Calculations for PercentDifference using Table VII row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.1592−0.1507|
0.1592 × 100%

%Diff = 5.34%

%Diff ≈ 5.3%

H. Full-Wave Rectified Sine Wave

FIG. 15: Representation of a Full-Wave Rectified Sine wave,
Ref. [1]

a0 = 2
π

an =

{
4

π(1−n2) , if n is even

0, if n is odd

bn = 0
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The Fourier Series for a Full-Wave Rectified Sine wave is then:

f(t) =
2

π
+

∞∑
neven

4

π(1− n2)
cos(nt) (15)

FIG. 16: Recorded line spectra of the generated 100 Hz Full-Wave Rectified Sine Wave

Measured Line Spectra Fourier Coefficients Normalized Percent

Frequency (Hz) Amplitude n an bn cn =
√
a2n + b2n Amplitude Difference

207.6 0.4700 2 -0.4244 0 0.4244 0.4244 –

414.8 0.0900 4 -0.0849 0 0.0849 0.0813 4.2

622.2 0.0450 6 -0.0364 0 0.0364 0.0406 11.7

830.0 0.0230 8 -0.0202 0 0.0202 0.0208 2.8

1037.4 0.0138 10 -0.0129 0 0.0129 0.0124 3.5

1244.2 0.0090 12 -0.0089 0 0.0089 0.0081 8.7

1452.1 0.0072 14 -0.0065 0 0.0065 0.0065 0.4

TABLE VIII: Full-Wave Rectified Sine wave measured data and comparison to theoretical values.

The measured coefficients for the Full-Wave Rectified Sine wave taken from the line spectrum graph in Fig.16
once normalized with the first fundamental term agree with the calculated theoretical Fourier series coefficients, only
fluctuating from 0.4% to 11.7%. The frequency locations of the coefficients also agree with the theory where they are
only present on even harmonics as defined in the Fourier series for a Full-Wave Rectified Sine wave in (15). There are
some noticeable, yet extremely tiny peaks on odd harmonic locations in the Line Spectrum Fig. 16 as there were for
the Half-Wave Rectified Sine wave which may be due to small inaccuracies in the waveform near the boundaries of
the function as before.

Sample Calculations for an using Table VIII row 1, for n = 2

an = 4
π(1−n2)

a1 = 4
π(1−22)

a1 = −0.4244
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Sample Calculations for NormalizedAmplitude using Table VIII row 2

Annormalized
= A× c1

A1

Annormalized
= 0.0900× 0.4244

0.4700

Annormalized
= 0.0813

Sample Calculations for PercentDifference using Table VIII row 2

%Diff =
|cn−Annormalized

|
cn

× 100%

%Diff = |0.0849−0.0813|
0.0849 × 100%

%Diff = 4.24%

%Diff ≈ 4.2%

VI. CONCLUSION

The analysis of the waves A though H and the deconstruction of the fundamental frequencies into the Fourier Series
coefficients using the LabView software for each wave allowed us to compare the measured values with the theoretical
Fourier coefficients for each respective wave. We were able to confirm the theory as the amplitude, once normalized,
agreed with the theoretical values with a difference of 0% to 18.8%. For most coefficients in all the waves the difference
was less than 10%, large errors were only incurred at harmonics that displayed a small Fourier coefficient, the precision
of these harmonics were susceptible to larger relative errors due to small fluctuations which were present in the wave
analysis. The fundamental frequency of the waves was also in line with the specified frequency of 100Hz on the
waveform generator, with all the waves having a fundamental frequency of about 103Hz, and the Sawtooth wave
having a fundamental frequency of 113Hz. Waveforms with Fourier coefficients that were zero at either odd or even
harmonics was also confirmed through the data collected for waves such as the Square wave, Triangle wave, Up-Down
Dirac Delta wave, Half-Wave Rectified Sine wave, and the Full-Wave Rectified Sine wave.

Some discrepancies with some small peaks appearing in harmonics which should not be present were notices in the
Up-Down Dirac Delta wave, the Half-Wave Rectified Sine wave, and the Full-Wave Rectified Sine wave which can be
due to some inaccuracies in the generated waveform. the pulses in the Dirac Delta waveforms are only approximations
which could lead to some other harmonics. The rectification process of the Sine wave may also incur some unknown
inaccuracies, the waveform generator would need to be studied in more depth to ascertain any factors contributing to
these harmonics shown on the Line Spectrum graphs.
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