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Fourier Method of
Waveform Analysis

17.1 INTRODUCTION

In the circuits examined previously, the response was obtained for excitations having constant,

sinusoidal, or exponential form. In such cases a single expression described the forcing function for

all time; for instance, v ¼ constant or v ¼ V sin!t, as shown in Fig. 17-1(a) and (b).

Certain periodic waveforms, of which the sawtooth in Fig. 17-1(c) is an example, can be only locally

defined by single functions. Thus, the sawtooth is expressed by f ðtÞ ¼ ðV=TÞt in the interval 0 < t < T

and by f ðtÞ ¼ ðV=TÞðt� TÞ in the interval T < t < 2T . While such piecemeal expressions describe the

waveform satisfactorily, they do not permit the determination of the circuit response. Now, if a periodic

function can be expressed as the sum of a finite or infinite number of sinusoidal functions, the responses

of linear networks to nonsinusoidal excitations can be determined by applying the superposition

theorem. The Fourier method provides the means for solving this type of problem.

In this chapter we develop tools and conditions for such expansions. Periodic waveforms may be

expressed in the form of Fourier series. Nonperiodic waveforms may be expressed by their Fourier

transforms. However, a piece of a nonperiodic waveform specified over a finite time period may also be

expressed by a Fourier series valid within that time period. Because of this, the Fourier series analysis is

the main concern of this chapter.

Fig. 17-1
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17.2 TRIGONOMETRIC FOURIER SERIES

Any periodic waveform—that is, one for which f ðtÞ ¼ f ðtþ TÞ—can be expressed by a Fourier series
provided that

(1) If it is discontinuous, there are only a finite number of discontinuities in the period T ;

(2) It has a finite average value over the period T ;

(3) It has a finite number of positive and negative maxima in the period T .

When these Dirichlet conditions are satisfied, the Fourier series exists and can be written in trigonometric
form:

f ðtÞ ¼ 1
2
a0 þ a1 cos!tþ a2 cos 2tþ a3 cos 3!tþ � � �

þ b1 sin!tþ b2 sin 2!tþ b3 sin 3!tþ � � � ð1Þ

The Fourier coefficients, a’s and b’s, are determined for a given waveform by the evaluation
integrals. We obtain the cosine coefficient evaluation integral by multiplying both sides of (1) by
cos n!t and integrating over a full period. The period of the fundamental, 2�=!, is the period of the
series since each term in the series has a frequency which is an integral multiple of the fundamental
frequency.

ð2�=!
0

f ðtÞ cos n!t dt ¼

ð2�=!
0

1

2
a0 cos n!t dtþ

ð2�=!
0

a1 cos!t cos n!t dtþ � � �

þ

ð2�=!
0

an cos
2 n!t dtþ � � � þ

ð2�=!
0

b1 sin!t cos n!t dt

þ

ð2�=!
0

b2 sin 2!t cos n! dtþ � � � ð2Þ

The definite integrals on the right side of (2) are all zero except that involving cos2 n!t, which has the
value ð�=!Þan. Then

an ¼
!

�

ð2�=!
0

f ðtÞ cos n!t dt ¼
2

T

ðT
0

f ðtÞ cos
2�nt

T
dt ð3Þ

Multiplying (1) by sin n!t and integrating as above results in the sine coefficient evaluation integral.

bn ¼
!

�

ð2�=!
0

f ðtÞ sin n!t dt ¼
2

T

ðT
0

f ðtÞ sin
2�nt

T
dt ð4Þ

An alternate form of the evaluation integrals with the variable  ¼ !t and the corresponding period
2� radians is

an ¼
1

�

ð2�
0

Fð Þ cos n d ð5Þ

bn ¼
1

�

ð2�
0

Fð Þ sin n d ð6Þ

where Fð Þ ¼ f ð =!Þ. The integrations can be carried out from �T=2 to T=2, �� to þ�, or over any
other full period that might simplify the calculation. The constant a0 is obtained from (3) or (5) with
n ¼ 0; however, since 1

2
a0 is the average value of the function, it can frequently be determined by

inspection of the waveform. The series with coefficients obtained from the above evaluation integrals
converges uniformly to the function at all points of continuity and converges to the mean value at points
of discontinuity.
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EXAMPLE 17.1 Find the Fourier series for the waveform shown in Fig. 17-2.

The waveform is periodic, of period 2�=! in t or 2� in !t. It is continuous for 0 < !t < 2� and given therein

by f ðtÞ ¼ ð10=2�Þ!t, with discontinuities at !t ¼ n2� where n ¼ 0; 1; 2; . . . . The Dirichlet conditions are satisfied.

The average value of the function is 5, by inspection, and thus, 1
2
a0 ¼ 5. For n > 0, (5) gives

an ¼
1

�

ð2�
0

10

2�

� �
!t cos n!t dð!tÞ ¼

10

2�2
!t

n
sin n!tþ

1

n2
cos n!t

� �2�
0

¼
10

2�2n2
ðcos n2�� cos 0Þ ¼ 0

Thus, the series contains no cosine terms. Using (6), we obtain

bn ¼
1

�

ð2�
0

10

2�

� �
!t sin n!t dð!tÞ ¼

10

2�2
�
!t

n
cos n!tþ

1

n2
sin n!t

� �2�
0

¼ �
10

�n

Using these sine-term coefficients and the average term, the series is

f ðtÞ ¼ 5�
10

�
sin!t�

10

2�
sin 2!t�

10

3�
sin 3!t� � � � ¼ 5�

10

�

X1
n¼1

sin n!t

n

The sine and cosine terms of like frequency can be combined as a single sine or cosine term with a

phase angle. Two alternate forms of the trigonometric series result.

f ðtÞ ¼ 1
2
a0 þ

P
cn cos ðn!t� �nÞ ð7Þ

and f ðtÞ ¼ 1
2
a0 þ

X
cn sin ðn!tþ �nÞ (8)

where cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
, �n ¼ tan�1

ðbn=anÞ, and �n ¼ tan�1
ðan=bnÞ. In (7) and (8), cn is the harmonic

amplitude, and the harmonic phase angles are �n or �n.

17.3 EXPONENTIAL FOURIER SERIES

A periodic waveform f ðtÞ satisfying the Dirichlet conditions can also be written as an exponential

Fourier series, which is a variation of the trigonometric series. The exponential series is

f ðtÞ ¼
X1

n¼�1

Ane
jn!t

ð9Þ

To obtain the evaluation integral for the An coefficients, we multiply (9) on both sides by e�jn!t and

integrate over the full period:

422 FOURIER METHOD OF WAVEFORM ANALYSIS [CHAP. 17

Fig. 17-2



ð2�
0

f ðtÞe�jn!t dð!tÞ ¼ � � � þ

ð2�
0

A�2e
�j2!te�jn!t dð!tÞ þ

ð2�
0

A�1e
�j!te�jn!t dð!tÞ

þ

ð2�
0

A0e
�jn!t dð!tÞ þ

ð2�
0

A1e
j!te�jn!t dð!tÞ þ � � �

þ

ð2�
0

Ane
jn!te�jn!t dð!tÞ þ � � � ð10Þ

The definite integrals on the right side of (10) are all zero except
Ð 2�
0 An dð!tÞ, which has the value 2�An.

Then

An ¼
1

2�

ð2�
0

f ðtÞe�jn!t dð!tÞ or An ¼
1

T

ðT
0

f ðtÞe�j2�nt=T dt ð11Þ

Just as with the a
n
and bn evaluation integrals, the limits of integration in (11) may be the endpoints

of any convenient full period and not necessarily 0 to 2� or 0 to T . Note that, f ðtÞ being real, A�n ¼ A
�
n,

so that only positive n needed to be considered in (11). Furthermore, we have

an ¼ 2ReAn bn ¼ �2 ImAn ð12Þ

EXAMPLE 17.2 Derive the exponential series (9) from the trigonometric series (1).
Replace the sine and cosine terms in (1) by their complex exponential equivalents.

sin n!t ¼
e jn!t � e�jn!t

2j
cos n!t ¼

e jn!t þ e�jn!t

2

Arranging the exponential terms in order of increasing n from �1 to þ1, we obtain the infinite sum (9) where

A0 ¼ a0=2 and

An ¼
1
2
ðan � jbnÞ A�n ¼

1
2
ðan þ jbnÞ for n ¼ 1; 2; 3; . . .

EXAMPLE 17.3 Find the exponential Fourier series for the waveform shown in Fig. 17-2. Using the coefficients

of this exponential series, obtain an and bn of the trigonometric series and compare with Example 17.1.

In the interval 0 < !t < 2� the function is given by f ðtÞ ¼ ð10=2�Þ!t. By inspection, the average value of the

function is A0 ¼ 5. Substituting f ðtÞ in (11), we obtain the coefficients An.

An ¼
1

2�

ð2�
0

10

2�

� �
!te�jn!t dð!tÞ ¼

10

ð2�Þ2
e�jn!t

ð�jnÞ2
ð�jn!t� 1Þ

� �2�
0

¼ j
10

2�n

Inserting the coefficients An in (12), the exponential form of the Fourier series for the given waveform is

f ðtÞ ¼ � � � � j
10

4�
e�j2!t

� j
10

2�
e�j!t

þ 5þ j
10

2�
e j!t þ j

10

4�
e j2!t þ � � � ð13Þ

The trigonometric series coefficients are, by (12),

an ¼ 0 bn ¼ �
10

�n

f ðtÞ ¼ 5�
10

�
sin!t�

10

2�
sin 2!t�

10

3�
sin 3!t� � � �and so

which is the same as in Example 17.1.

17.4 WAVEFORM SYMMETRY

The series obtained in Example 17.1 contained only sine terms in addition to a constant term. Other
waveforms will have only cosine terms; and sometimes only odd harmonics are present in the series,
whether the series contains sine, cosine, or both types of terms. This is the result of certain types of
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symmetry exhibited by the waveform. Knowledge of such symmetry results in reduced calculations in
determining the Fourier series. For this reason the following definitions are important.

1. A function f ðxÞ is said to be even if f ðxÞ ¼ f ð�xÞ.

The function f ðxÞ ¼ 2þ x2 þ x4 is an example of even functions since the functional values for x and
�x are equal. The cosine is an even function, since it can be expressed as the power series

cos x ¼ 1�
x2

2!
þ
x4

4!
�
x6

6!
þ
x8

8!
� � � �

The sum or product of two or more even functions is an even function, and with the addition of a
constant the even nature of the function is still preserved.

In Fig. 17-3, the waveforms shown represent even functions of x. They are symmetrical with respect
to the vertical axis, as indicated by the construction in Fig. 17-3(a).

2. A function f ðxÞ is said to be odd if f ðxÞ ¼ �f ð�xÞ.

The function f ðxÞ ¼ xþ x3 þ x5 is an example of odd functions since the values of the function for x
and �x are of opposite sign. The sine is an odd function, since it can be expressed as the power series

sin x ¼ x�
x3

3!
þ
x5

5!
�
x7

7!
þ
x9

9!
� � � �

The sum of two or more odd functions is an odd function, but the addition of a constant removes
the odd nature of the function. The product of two odd functions is an even function.

The waveforms shown in Fig. 17-4 represent odd functions of x. They are symmetrical with respect
to the origin, as indicated by the construction in Fig. 17-4(a).
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3. A periodic function f ðxÞ is said to have half-wave symmetry if f ðxÞ ¼ �f ðxþ T=2Þ where T is the

period. Two waveforms with half-wave symmetry are shown in Fig. 17-5.

When the type of symmetry of a waveform is established, the following conclusions are reached. If

the waveform is even, all terms of its Fourier series are cosine terms, including a constant if the wave-

form has a nonzero average value. Hence, there is no need of evaluating the integral for the coefficients

bn, since no sine terms can be present. If the waveform is odd, the series contains only sine terms. The

wave may be odd only after its average value is subtracted, in which case its Fourier representation will

simply contain that constant and a series of sine terms. If the waveform has half-wave symmetry, only

odd harmonics are present in the series. This series will contain both sine and cosine terms unless the

function is also odd or even. In any case, an and bn are equal to zero for n ¼ 2; 4; 6; . . . for any

waveform with half-wave symmetry. Half-wave symmetry, too, may be present only after subtraction

of the average value.

Certain waveforms can be odd or even, depending upon the location of the vertical axis. The square
wave of Fig. 17-6(a) meets the condition of an even function: f ðxÞ ¼ f ð�xÞ. A shift of the vertical axis to
the position shown in Fig. 17-6(b) produces an odd function f ðxÞ ¼ �f ð�xÞ. With the vertical axis placed
at any points other than those shown in Fig. 17-6, the square wave is neither even nor odd, and its series
contains both sine and cosine terms. Thus, in the analysis of periodic functions, the vertical axis should be
conveniently chosen to result in either an even or odd function, if the type of waveformmakes this possible.

The shifting of the horizontal axis may simplify the series representation of the function. As an
example, the waveform of Fig. 17-7(a) does not meet the requirements of an odd function until the
average value is removed as shown in Fig. 17-7(b). Thus, its series will contain a constant term and only
sine terms.

The preceding symmetry considerations can be used to check the coefficients of the exponential
Fourier series. An even waveform contains only cosine terms in its trigonometric series, and therefore
the exponential Fourier coefficients must be pure real numbers. Similarly, an odd function whose
trigonometric series consists of sine terms has pure imaginary coefficients in its exponential series.

17.5 LINE SPECTRUM

A plot showing each of the harmonic amplitudes in the wave is called the line spectrum. The lines
decrease rapidly for waves with rapidly convergent series. Waves with discontinuities, such as the
sawtooth and square wave, have spectra with slowly decreasing amplitudes, since their series have strong
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high harmonics. Their 10th harmonics will often have amplitudes of significant value as compared to
the fundamental. In contrast, the series for waveforms without discontinuities and with a generally
smooth appearance will converge rapidly, and only a few terms are required to generate the wave. Such
rapid convergence will be evident from the line spectrum where the harmonic amplitudes decrease
rapidly, so that any above the 5th or 6th are insignificant.

The harmonic content and the line spectrum of a wave are part of the very nature of that wave and
never change, regardless of the method of analysis. Shifting the origin gives the trigonometric series a
completely different appearance, and the exponential series coefficients also change greatly. However,
the same harmonics always appear in the series, and their amplitudes,

c0 ¼ j 1
2
a0j and cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
ðn � 1Þ ð14Þ

or c0 ¼ jA0j and cn ¼ jAnj þ jA�nj ¼ 2jAnj ðn � 1Þ (15)

remain the same. Note that when the exponential form is used, the amplitude of the nth harmonic
combines the contributions of frequencies þn! and �n!.

EXAMPLE 17.4 In Fig. 17-8, the sawtooth wave of Example 17.1 and its line spectrum are shown. Since there

were only sine terms in the trigonometric series, the harmonic amplitudes are given directly by 1
2
a0 and jbnj. The

same line spectrum is obtained from the exponential Fourier series, (13).

17.6 WAVEFORM SYNTHESIS

Synthesis is a combination of parts so as to form a whole. Fourier synthesis is the recombination of
the terms of the trigonometric series, usually the first four or five, to produce the original wave. Often it
is only after synthesizing a wave that the student is convinced that the Fourier series does in fact
represent the periodic wave for which it was obtained.

The trigonometric series for the sawtooth wave of Fig. 17-8 is

f ðtÞ ¼ 5�
10

�
sin!t�

10

2�
sin 2!t�

10

3�
sin 3!t� � � �

These four terms are plotted and added in Fig. 17-9. Although the result is not a perfect sawtooth wave,
it appears that with more terms included the sketch will more nearly resemble a sawtooth. Since this
wave has discontinuities, its series is not rapidly convergent, and consequently, the synthesis using only
four terms does not produce a very good result. The next term, at the frequency 4!, has amplitude 10/
4�, which is certainly significant compared to the fundamental amplitude, 10/�. As each term is added
in the synthesis, the irregularities of the resultant are reduced and the approximation to the original wave
is improved. This is what was meant when we said earlier that the series converges to the function at all
points of continuity and to the mean value at points of discontinuity. In Fig. 17-9, at 0 and 2� it is clear
that a value of 5 will remain, since all sine terms are zero at these points. These are the points of
discontinuity; and the value of the function when they are approached from the left is 10, and from the
right 0, with the mean value 5.
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17.7 EFFECTIVE VALUES AND POWER

The effective or rms value of the function

f ðtÞ ¼ 1
2
a0 þ a1 cos!tþ a2 cos 2!tþ � � � þ b1 sin!tþ b2 sin 2!tþ � � �

is Frms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
2
a0Þ

2
þ 1

2
a21 þ

1
2
a22 þ � � � þ 1

2
b21 þ

1
2
b22 þ � � �

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 þ

1
2
c21 þ

1
2
c22 þ

1
2
c33 þ � � �

q
(16)

where (14) has been used.

Considering a linear network with an applied voltage which is periodic, we would expect that the
resulting current would contain the same harmonic terms as the voltage, but with harmonic amplitudes
of different relative magnitude, since the impedance varies with n!. It is possible that some harmonics
would not appear in the current; for example, in a pure LC parallel circuit, one of the harmonic
frequencies might coincide with the resonant frequency, making the impedance at that frequency
infinite. In general, we may write

v ¼ V0 þ
X

Vn sin ðn!tþ �nÞ and i ¼ I0 þ
X

In sin ðn!tþ  nÞ ð17Þ

with corresponding effective values of

Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 þ
1
2
V2

1 þ
1
2
V2

2 þ � � �

q
and Irms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 þ 1

2
I21 þ 1

2
I22 þ � � �

q
ð18Þ

The average power P follows from integration of the instantaneous power, which is given by the
product of v and i:

p ¼ vi ¼ V0 þ
X

Vn sin ðn!tþ �nÞ
h i

I0 þ
X

In sin ðn!tþ  nÞ

h i
ð19Þ

Since v and i both have period T , their product must have an integral number of its periods in T .
(Recall that for a single sine wave of applied voltage, the product vi has a period half that of the voltage
wave.) The average may therefore be calculated over one period of the voltage wave:

P ¼
1

T

ðT
0

V0 þ
X

Vn sin ðn!tþ �nÞ
h i

I0 þ
X

In sin ðn!tþ  nÞ

h i
dt ð20Þ

Examination of the possible terms in the product of the two infinite series shows them to be of the
following types: the product of two constants, the product of a constant and a sine function, the product
of two sine functions of different frequencies, and sine functions squared. After integration, the product
of the two constants is still V0I0 and the sine functions squared with the limits applied appear as
ðVnIn=2Þ cos ð�n �  nÞ; all other products upon integration over the period T are zero. Then the average
power is

P ¼ V0I0 þ
1
2
V1I1 cos �1 þ

1
2
V2I2 cos �2 þ

1
2
V3I3 cos �3 þ � � � ð21Þ
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where �n ¼ �n �  n is the angle on the equivalent impedance of the network at the angular frequency n!,
and Vn and In are the maximum values of the respective sine functions.

In the special case of a single-frequency sinusoidal voltage, V0 ¼ V2 ¼ V3 ¼ � � � ¼ 0, and (21)
reduces to the familiar

P ¼ 1
2
V1I1 cos �1 ¼ VeffIeff cos �

Compare Section 10.2. Also, for a dc voltage, V1 ¼ V2 ¼ V3 ¼ � � � ¼ 0, and (21) becomes

P ¼ V0I0 ¼ VI

Thus, (21) is quite general. Note that on the right-hand side there is no term that involves voltage and
current of different frequencies. In regard to power, then, each harmonic acts independently, and

P ¼ P0 þ P1 þ P2 þ � � �

17.8 APPLICATIONS IN CIRCUIT ANALYSIS

It has already been suggested above that we could apply the terms of a voltage series to a linear
network and obtain the corresponding harmonic terms of the current series. This result is obtained by
superposition. Thus we consider each term of the Fourier series representing the voltage as a single
source, as shown in Fig. 17.10. Now the equivalent impedance of the network at each harmonic
frequency n! is used to compute the current at that harmonic. The sum of these individual responses
is the total response i, in series form, to the applied voltage.

EXAMPLE 17.5 A series RL circuit in which R ¼ 5 � and L ¼ 20 mH (Fig. 17-11) has an applied voltage

v ¼ 100þ 50 sin!tþ 25 sin 3!t (V), with ! ¼ 500 rad/s. Find the current and the average power.

Compute the equivalent impedance of the circuit at each frequency found in the voltage function. Then obtain

the respective currents.

At ! ¼ 0, Z0 ¼ R ¼ 5 � and

I0 ¼
V0

R
¼

100

5
¼ 20 A

At ! ¼ 500 rad/s, Z1 ¼ 5þ jð500Þð20� 10�3
Þ ¼ 5þ j10 ¼ 11:15 63:48 � and

i1 ¼
V1;max

Z1

sinð!t� �1Þ ¼
50

11:15
sinð!t� 63:48Þ ¼ 4:48 sinð!t� 63:48Þ ðAÞ

At 3! ¼ 1500 rad/s, Z3 ¼ 5þ j30 ¼ 30:4 80:548 � and

i3 ¼
V3;max

Z3

sin ð3!t� �3Þ ¼
25

30:4
sin ð3!t� 80:548Þ ¼ 0:823 sin ð3!t�80:548Þ ðAÞ

The sum of the harmonic currents is the required total response; it is a Fourier series of the type (8).

i ¼ 20þ 4:48 sin ð!t� 63:48Þ þ 0:823 sin ð3!t� 80:548Þ ðAÞ

This current has the effective value

Ieff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ ð4:482=2Þ þ ð0:8232=2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
410:6

p
¼ 20:25 A

which results in a power in the 5-� resistor of

P ¼ I2effR ¼ ð410:6Þ5 ¼ 2053 W

As a check, we compute the total average power by calculating first the power contributed by each harmonic

and then adding the results.

At ! ¼ 0: P0 ¼ V0I0 ¼ 100ð20Þ ¼ 2000 W

At ! ¼ 500 rad/s: P1 ¼
1
2
V1I1 cos �1 ¼

1
2
ð50Þð4:48Þ cos 63:48 ¼ 50:1 W

At 3! ¼ 1500 rad/s: P3 ¼
1
2
V3I3 cos �3 ¼

1
2
ð25Þð0:823Þ cos 80:548 ¼ 1:69 W

Then, P ¼ 2000þ 50:1þ 1:69 ¼ 2052 W
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Another Method

The Fourier series expression for the voltage across the resistor is

vR ¼ Ri ¼ 100þ 22:4 sin ð!t� 63:48Þ þ 4:11 sin ð3!t� 80:548Þ ðVÞ

VReff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1002 þ

1

2
ð22:4Þ2 þ

1

2
ð4:11Þ2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10 259

p
¼ 101:3 Vand

Then the power delivered by the source is P ¼ V2
Reff=R ¼ ð10 259Þ=5 ¼ 2052 W.

In Example 17.5 the driving voltage was given as a trigonometric Fourier series in t, and the
computations were in the time domain. (The complex impedance was used only as a shortcut; Zn

and �n could have been obtained directly from R, L, and n!). If, instead, the voltage is represented by an
exponential Fourier series,

vðtÞ ¼
Xþ1

�1

Vne
jn!t

then we have to do with a superposition of phasors Vn (rotating counterclockwise if n > 0, clockwise if
n < 0), and so frequency-domain methods are called for. This is illustrated in Example 17.6.

EXAMPLE 17.6 A voltage represented by the triangular wave shown in Fig. 17-12 is applied to a pure capacitor C.

Determine the resulting current.

In the interval �� < !t < 0 the voltage function is v ¼ Vmax þ ð27Vmax=�Þ!t; and for 0 < !t < �,
v ¼ Vmax � ð2Vmax=�Þ!t. Then the coefficients of the exponential series are determined by the evaluation integral

Vn ¼
1

2�

ð0
��

½Vmax þ ð2Vmax=�Þ!t�e
�jn!t dð!tÞ þ

1

2�

ð�
0

½Vmax � ð2Vmax=�Þ!t�e
�jn!t dð!tÞ

from which Vn ¼ 4Vmax=�
2n2 for odd n, and Vn ¼ 0 for even n.

The phasor current produced by Vn (n odd) is

CHAP. 17] FOURIER METHOD OF WAVEFORM ANALYSIS 429

Fig. 17-10 Fig. 17-11

Fig. 17-12



In ¼
Vn

Zn

¼
4Vmax=�

2n2

1=jn!C
¼ j

4Vmax!C

�2n

with an implicit time factor e jn!t. The resultant current is therefore

iðtÞ ¼
Xþ1

�1

Ine
jn!t

¼ j
4Vmax!C

�2

Xþ1

�1

e jn!t

n

where the summation is over odd n only.

The series could be converted to the trigonometric form and then synthesized to show the current waveform.

However, this series is of the same form as the result in Problem 17.8, where the coefficients are An ¼ �jð2V=n�Þ for
odd n only. The sign here is negative, indicating that our current wave is the negative of the square wave of Problem

17.8 and has a peak value 2Vmax!C=�.

17.9 FOURIER TRANSFORM OF NONPERIODIC WAVEFORMS

A nonperiod waveform xðtÞ is said to satisfy the Dirichlet conditions if

(a) xðtÞ is absolutely integrable,
Ðþ1

�1
jxðtÞj dt <1, and

(b) the number of maxima and minima and the number of discontinuities of xðtÞ in every finite
interval is finite.

For such a waveform, we can define the Fourier transform Xð f Þ by

Xð f Þ ¼

ð1
�1

xðtÞe�j2�ft dt ð22aÞ

where f is the frequency. The above integral is called the Fourier integral. The time function xðtÞ is
called the inverse Fourier transform of Xð f Þ and is obtained from it by

xðtÞ ¼

ð1
�1

Xð f Þe j2�ft df ð22bÞ

xðtÞ and Xð f Þ form a Fourier transform pair. Instead of f , the angular velocity ! ¼ 2�f may also be
used, in which case, (22a) and (22b) become, respectively,

Xð!Þ ¼

ð1
�1

xðtÞe�j!t dt ð23aÞ

and xðtÞ ¼
1

2�

ð1
�1

Xð!Þe j!t d! (23b)

EXAMPLE 17.7 Find the Fourier transform of xðtÞ ¼ e�atuðtÞ, a > 0. Plot Xð f Þ for �1 < f < þ1.

From (22a), the Fourier transform of xðtÞ is

Xð f Þ ¼

ð1
0

e�ate�j2�ft dt ¼
1

aþ j2�f
ð24Þ

Xð f Þ is a complex function of a real variable. Its magnitude and phase angle, jXð f Þj and Xð f Þ, respectively, shown

in Figs. 17-13(a) and (b), are given by

jXð f Þj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4�2f 2
p ð25aÞ

and Xð f Þ ¼ � tan�1
ð2�f =aÞ (25b)
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Alternatively, Xð f Þ may be shown by its real and imaginary parts, Re ½Xð f Þ� and Im ½Xð f Þ�, as in Figs. 17-14(a) and

(b).

Re ½Xð f Þ� ¼
a

a2 þ 4�2f 2
ð26aÞ

Im ½Xð f Þ� ¼
�2�f

a2 þ 4�2f 2
ð26bÞ

EXAMPLE 17.8 Find the Fourier transform of the square pulse

xðtÞ ¼
1 for � T < t < T
0 otherwise

�

From (22a),

Xð f Þ ¼

ðT
�T

e�j2�ft dt ¼
1

�j2�f
ej2�f
h iT

�T
¼

sin 2�fT

�f
ð27Þ

Because xðtÞ is even, Xð f Þ is real. The transform pairs are plotted in Figs. 17-15(a) and (b) for T ¼ 1
2
s.

EXAMPLE 17.9 Find the Fourier transform of xðtÞ ¼ eatuð�tÞ; a > 0.

Xð f Þ ¼

ð0
�1

eate�j2�ft dt ¼
1

a� j2�f
ð28Þ
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EXAMPLE 17.10 Find the inverse Fourier transform of Xð f Þ ¼ 2a=ða2 þ 4�2f 2Þ, a > 0.

By partial fraction expansion we have

Xð f Þ ¼
1

aþ j2�f
þ

1

a� j2�f
ð29Þ

The inverse of each term in (29) may be derived from (24) and (28) so that

xðtÞ ¼ e�atuðtÞ þ eatuð�tÞ ¼ e�ajtj for all t

See Fig. 17-16.

17.10 PROPERTIES OF THE FOURIER TRANSFORM

Some properties of the Fourier transform are listed in Table 17-1. Several commonly used trans-
form pairs are given in Table 17-2.

17.11 CONTINUOUS SPECTRUM

jXð f Þj2, as defined in Section 17.9, is called the energy density or the spectrum of the waveform xðtÞ.
Unlike the periodic functions, the energy content of a nonperiodic waveform xðtÞ at each frequency is
zero. However, the energy content within a frequency band from f1 to f2 is
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Table 17-1 Fourier Transform Properties

Time Domain xðtÞ ¼

ð1
�1

Xð f Þe j2�ft dt Frequency Domain Xð f Þ ¼

ð1
�1

xðtÞe�j2�ft dt

1. xðtÞ real Xð f Þ ¼ X�
ð�f Þ

2. xðtÞ even, xðtÞ ¼ xð�tÞ Xð f Þ ¼ Xð�f Þ

3. xðtÞ, odd, xðtÞ ¼ �xð�tÞ Xð f Þ ¼ �Xð�f Þ

4. XðtÞ xð�f Þ

5.
xð0Þ ¼

ð1
�1

Xð f Þ df Xð0Þ ¼

ð1
�1

xðtÞ dt

6. yðtÞ ¼ xðatÞ
Yð f Þ ¼

1

jaj
Xð f =aÞ

7. yðtÞ ¼ txðtÞ
Yð f Þ ¼ �

1

j2�

dXð f Þ

df

8. yðtÞ ¼ xð�tÞ Yð f Þ ¼ Xð�f Þ

9. yðtÞ ¼ xðt� t0Þ Yð f Þ ¼ e�j2�ft0Xð f Þ

Table 17-2 Fourier Transform Pairs

xðtÞ Xð f Þ

1. e�atuðtÞ; a > 0

1

aþ j2�f

2. e�ajtj; a > 0

2a

a2 þ 4�2f 2

3. te�atuðtÞ; a > 0

1

ðaþ j2�f Þ2

4. expð��t2=�2Þ � expð��f 2�2Þ

5.

6.

7. 1 �ð f Þ

8. �ðtÞ 1

9. sin 2�f0t

�ð f � f0Þ � �ð f þ f0Þ

2j

10. cos 2�f0t
�ð f � f0Þ þ �ð f þ f0Þ

2



W ¼ 2

ðf2
f1

jxð f Þj2 df ð30Þ

EXAMPLE 17.11 Find the spectrum of xðtÞ ¼ e�atuðtÞ � eatuð�tÞ, a > 0, shown in Fig. 17-17.

We have xðtÞ ¼ x1ðtÞ � x2ðtÞ. Since x1ðtÞ ¼ e�atuðtÞ and x2ðtÞ ¼ eatuð�tÞ,

X1ð f Þ ¼
1

aþ j2�f
X2ð f Þ ¼

1

a� j2�f

Xð f Þ ¼ X1ð f Þ � X2ð f Þ ¼
�j4�f

a2 þ 4�2f 2
Then

jXð f Þj2 ¼
16�2f 2

ða2 þ 4�2f 2Þ2
from which

EXAMPLE 17.12 Find and compare the energy contents W1 and W2 of y1ðtÞ ¼ e�jatj and

y2ðtÞ ¼ e�atuðtÞ � eatuð�tÞ, a > 0, within the band 0 to 1Hz. Let a ¼ 200.

From Examples 17.10 and 17.11,

jY1ð f Þj
2
¼

4a2

ða2 þ 4�2f 2Þ2
and jY2ð f Þj

2
¼

16�2f 2

ða2 þ 4�2f 2Þ2

Within 0 < f < 1 Hz, the spectra and energies may be approximated by

jY1ð f Þj
2
� 4=a2 ¼ 10�4 J=Hz and W1 ¼ 2ð10�4

Þ J ¼ 200mJ

jY2ð f Þ
2
j � 10�7 f 2 and W2 � 0

The preceding results agree with the observation that most of the energy in y1ðtÞ is near the low-frequency region in

contrast to y2ðtÞ.

Solved Problems

17.1 Find the trigonometric Fourier series for the square wave shown in Fig. 17-18 and plot the line
spectrum.

In the interval 0 < !t < �, f ðtÞ ¼ V; and for � < !t < 2�, f ðtÞ ¼ �V . The average value of the wave is

zero; hence, a0=2 ¼ 0. The cosine coefficients are obtained by writing the evaluation integral with the

functions inserted as follows:
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an ¼
1

�

ð�
0

V cos n!t dð!tÞ þ

ð2�
�

ð�VÞ cos n!t dð!tÞ

� �
¼

V

�

1

n
sin n!t

� ��
0

�
1

n
sin n!t

� �2�
�

( )

¼ 0 for all n

Thus, the series contains no cosine terms. Proceeding with the evaluation integral for the sine terms,

bn ¼
1

�

ð�
0

V sin n!t dð!tÞ þ

ð2�
�

ð�VÞ sin n!t dð!tÞ

� �

¼
V

�
�
1

n
cos n!t

� ��
0

þ
1

n
cos n!t

� �2�
�

( )

¼
V

�n
ð� cos n�þ cos 0þ cos n2�� cos n�Þ ¼

2V

�n
ð1� cos n�Þ

Then bn ¼ 4V=�n for n ¼ 1; 3; 5; . . . ; and bn ¼ 0 for n ¼ 2; 4; 6; . . . . The series for the square wave is

f ðtÞ ¼
4V

�
sin!tþ

4V

3�
sin 3!tþ

4V

5�
sin 5!tþ � � �

The line spectrum for this series is shown in Fig. 17-19. This series contains only odd-harmonic sine

terms, as could have been anticipated by examination of the waveform for symmetry. Since the wave in Fig.

17-18 is odd, its series contains only sine terms; and since it also has half-wave symmetry, only odd

harmonics are present.

17.2 Find the trigonometric Fourier series for the triangular wave shown in Fig. 17-20 and plot the line
spectrum.

The wave is an even function, since f ðtÞ ¼ f ð�tÞ, and if its average value, V=2, is subtracted, it also has

half-wave symmetry, that is, f ðtÞ ¼ �f ðtþ �Þ. For �� < !t < 0, f ðtÞ ¼ V þ ðV=�Þ!t; and for 0 < !t < �,
f ðtÞ ¼ V � ðV=�Þ!t. Since even waveforms have only cosine terms, all bn ¼ 0. For n � 1,

an ¼
1

�

ð0
��

½V þ ðV=�Þ!t� cos n!t dð!tÞ þ
1

�

ð�
0

½V � ðV=�Þ!t� cos n!t dð!tÞ

¼
V

�

ð�
��

cos n!t dð!tÞ þ

ð0
��

!t

�
cos n!t dð!tÞ �

ð�
0

!t

�
cos n!t dð!tÞ

� �

¼
V

�2
1

n2
cos n!tþ

!t

�
sin n!t

� �0
��

�
1

n2
cos n!tþ

!t

n
sin n!t

� ��
0

( )

¼
V

�2n2
½cos 0� cosð�n�Þ � cos n�þ cos 0� ¼

2V

�2n2
ð1� cos n�Þ

As predicted from half-wave symmetry, the series contains only odd terms, since an ¼ 0 for n ¼ 2; 4; 6; . . . .
For n ¼ 1; 3; 5; . . . ; an ¼ 4V=�2n2. Then the required Fourier series is

f ðtÞ ¼
V

2
þ

4V

��2
cos!tþ

4V

ð3�Þ2
cos 3!tþ

4V

ð5�Þ2
cos 5!tþ � � �
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The coefficients decrease as 1=n2, and thus the series converges more rapidly than that of Problem 17.1. This

fact is evident from the line spectrum shown in Fig. 17-21.

17.3 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-22 and plot the line
spectrum.

By inspection, the waveform is odd (and therefore has average value zero). Consequently the series will

contain only sine terms. A single expression, f ðtÞ ¼ ðV=�Þ!t, describes the wave over the period from �� to

þ�, and we will use these limits on our evaluation integral for bn.

bn ¼
1

�

ð�
��

ðV=�Þ!t sin n!t dð!tÞ ¼
V

�2
1

n2
sin n!t�

!t

n
cos n!t

� ��
��

¼ �
2V

n�
ðcos n�Þ

As cos n� is þ1 for even n and �1 for odd n, the signs of the coefficients alternate. The required series is

f ðtÞ ¼
2V

�
fsin!t� 1

2
sin 2!tþ 1

3
sin 3!t� 1

4
sin 4!tþ � � �g

The coefficients decrease as 1=n, and thus the series converges slowly, as shown by the spectrum in Fig. 17-23.

Except for the shift in the origin and the average term, this waveform is the same as in Fig. 17-8; compare the

two spectra.

17.4 Find the trigonometric Fourier series for the waveform shown in Fig. 17-24 and sketch the line
spectrum.

In the interval 0 < !t < �, f ðtÞ ¼ ðV=�Þ!t; and for � < !t < 2�, f ðtÞ ¼ 0. By inspection, the average

value of the wave is V=4. Since the wave is neither even nor odd, the series will contain both sine and cosine

terms. For n > 0, we have

an ¼
1

�

ð�
0

ðV=�Þ!t cos n!t dð!tÞ ¼
V

�2
1

n2
cos n!tþ

!t

n
sin n!t

� ��
0

¼
V

�2n2
ðcos n�� 1Þ
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When n is even, cos n�� 1 ¼ 0 and an ¼ 0. When n is odd, an ¼ �2V=ð�2n2Þ. The bn coefficients are

bn ¼
1

�

ð�
0

ðV=�Þ!t sin n!t dð!tÞ ¼
V

�2
1

n2
sin n!t�

!t

n
cos n!t

� ��
0

¼ �
V

�n
ðcos n�Þ ¼ ð�1Þnþ1 V

�n

Then the required Fourier series is

f ðtÞ ¼
V

4
�
2V

�2
cos!t�

2V

ð3�Þ2
cos 3!t�

2V

ð5�Þ2
cos 5!t� � � �

þ
V

�
sin!t�

V

2�
sin 2!tþ

V

3�
sin 3!t� � � �

The even-harmonic amplitudes are given directly by jbnj, since there are no even-harmonic cosine terms.

However, the odd-harmonic amplitudes must be computed using cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
. Thus,

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2V=�2Þ2 þ ðV=�Þ2

q
¼ Vð0:377Þ c3 ¼ Vð0:109Þ c5 ¼ Vð0:064Þ

The line spectrum is shown in Fig. 17-25.

17.5 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-26
and sketch the line spectrum.

The wave shows no symmetry, and we therefore expect the series to contain both sine and cosine terms.

Since the average value is not obtainable by inspection, we evaluate a0 for use in the term a0=2.

a0 ¼
1

�

ð�
0

V sin!t dð!tÞ ¼
V

�
½� cos!t��0 ¼

2V

�

Next we determine an:

an ¼
1

�

ð�
0

V sin!t cos n!t dð!tÞ

¼
V

�

�n sin!t sin n!t� cos n!t cos!t

�n2 þ 1

� ��
0

¼
V

�ð1� n2Þ
ðcos n�þ 1Þ

With n even, an ¼ 2V=�ð1� n2Þ; and with n odd, an ¼ 0. However, this expression is indeterminate for

n ¼ 1, and therefore we must integrate separately for a1.

a1 ¼
1

�

ð�
0

V sin!t cos!t dð!tÞ ¼
V

�

ð�
0

1
2
sin 2!t dð!tÞ ¼ 0

Now we evaluate bn:

bn ¼
1

�

ð�
0

V sin!t sin n!t dð!tÞ ¼
V

�

n sin!t cos n!t� sin n!t cos!t

�n2 þ 1

� ��
0

¼ 0
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Here again the expression is indeterminate for n ¼ 1, and b1 is evaluated separately.

b1 ¼
1

�

ð�
0

V sin2 !t dð!tÞ ¼
V

�

!t

2
�
sin 2!t

4

� ��
0

¼
V

2

Then the required Fourier series is

f ðtÞ ¼
V

�
1þ

�

2
sin!t�

2

3
cos 2!t�

2

15
cos 4!t�

2

35
cos 6!t� � � �

� �

The spectrum, Fig. 17-27, shows the strong fundamental term in the series and the rapidly decreasing

amplitudes of the higher harmonics.

17.6 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-28,
where the vertical axis is shifted from its position in Fig. 17-26.

The function is described in the interval �� < !t < 0 by f ðtÞ ¼ �V sin!t. The average value is the

same as that in Problem 17.5, that is, 1
2
a0 ¼ V=�. For the coefficients an, we have

an ¼
1

�

ð0
��

ð�V sin!tÞ cos n!t dð!tÞ ¼
V

�ð1� n2Þ
ð1þ cos n�Þ

For n even, an ¼ 2V=�ð1� n2Þ; and for n odd, an ¼ 0, except that n ¼ 1 must be examined separately.

a1 ¼
1

�

ð0
��

ð�V sin!tÞ cos!t dð!tÞ ¼ 0

For the coefficients bn, we obtain

bn ¼
1

�

ð0
��

ð�V sin!tÞ sin n!t dð!tÞ ¼ 0

except for n ¼ 1.

b1 ¼
1

�

ð0
��

ð�VÞ sin2 !t dð!tÞ ¼ �
V

2

Thus, the series is

f ðtÞ ¼
V

�
1�

�

2
sin!t�

2

3
cos 2!t�

2

15
cos 4!t�

2

35
cos 6!t� � � �

� �

438 FOURIER METHOD OF WAVEFORM ANALYSIS [CHAP. 17

Fig. 17-26 Fig. 17-27

Fig. 17-28



This series is identical to that of Problem 17.5, except for the fundamental term, which has a negative

coefficient in this series. The spectrum would obviously be identical to that of Fig. 17-27.

Another Method

When the sine wave V sin!t is subtracted from the graph of Fig. 17.26, the graph of Fig. 17-28 results.

17.7 Obtain the trigonometric Fourier series for the repeating rectangular pulse shown in Fig. 17-29
and plot the line spectrum.

With the vertical axis positioned as shown, the wave is even and the series will contain only cosine terms

and a constant term. In the period from �� to þ� used for the evaluation integrals, the function is zero

except from ��=6 to þ�=6.

a0 ¼
1

�

ð�=6
��=6

V dð!tÞ ¼
V

3
an ¼

1

�

ð�=6
��=6

V cos n!t dð!tÞ ¼
2V

n�
sin

n�

6

Since sin n�=6 ¼ 1=2,
ffiffiffi
3

p
=2; 1;

ffiffiffi
3

p
=2; 1=2; 0;�1=2; . . . for n ¼ 1; 2; 3; 4; 5; 6; 7; . . . , respectively, the series is

f ðtÞ ¼
V

6
þ
2V

�

"
1

2
cos!tþ

ffiffiffi
3

p

2

1

2

� �
cos 2!tþ 1

1

3

� �
cos 3!tþ

ffiffiffi
3

p

2

1

4

� �
cos 4!t

þ
1

2

1

5

� �
cos 5!t�

1

2

1

7

� �
cos 7!t� � � �

#

f ðtÞ ¼
V

6
þ
2V

�

X1
n¼1

1

n
sin ðn�=6Þ cos n!tor

The line spectrum, shown in Fig. 17-30, decreases very slowly for this wave, since the series converges

very slowly to the function. Of particular interest is the fact that the 8th, 9th, and 10th harmonic

amplitudes exceed the 7th. With the simple waves considered previously, the higher-harmonic amplitudes

were progressively lower.

17.8 Find the exponential Fourier series for the square wave shown in Figs. 17-18 and 17-31, and
sketch the line spectrum. Obtain the trigonometric series coefficients from those of the expo-
nential series and compare with Problem 17.1.

In the interval �� < !t < 0, f ðtÞ ¼ �V ; and for 0 < !t < �, f ðtÞ ¼ V . The wave is odd; therefore,

A0 ¼ 0 and the An will be pure imaginaries.

An ¼
1

2�

ð0
��

ð�VÞe�jn!t dð!tÞ þ

ð�
0

Ve�jn!t dð!tÞ

� �

¼
V

2�
�

1

ð�jnÞ
e�jn!t

� �0
��

þ
1

ð�jnÞ
e�jn!t

� ��
0

( )

¼
V

�j2�n
ð�e0 þ e jn� þ e�jn�

� e0Þ ¼ j
V

n�
ðejn� � 1Þ
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For n even, e jn� ¼ þ1 and An ¼ 0; for n odd, e jn� ¼ �1 and An ¼ �jð2V=n�Þ (half-wave symmetry). The

required Fourier series is

f ðtÞ ¼ � � � þ j
2V

3�
e�j3!t

þ j
2V

�
e�j!t

� j
2V

�
e j!t � j

2V

3�
e j3!t � � � �

The graph in Fig. 17-32 shows amplitudes for both positive and negative frequencies. Combining the

values at þn and �n yields the same line spectrum as plotted in Fig. 17-19.

The trigonometric-series cosine coefficients are

an ¼ 2ReAn ¼ 0

bn ¼ �2 ImAn ¼
4V

n�
for odd n onlyand

These agree with the coefficients obtained in Problem 17.1.

17.9 Find the exponential Fourier series for the triangular wave shown in Figs. 17-20 and 17-33 and
sketch the line spectrum.

In the interval �� < !t < 0, f ðtÞ ¼ V þ ðV=�Þ!t; and for 0 < !t < �, f ðtÞ ¼ V � ðV=�Þ!t. The wave

is even and therefore the An coefficients will be pure real. By inspection the average value is V=2.

An ¼
1

2�

ð0
��

½V þ ðV=�Þ!t�e�jn!t dð!tÞ þ

ð�
0

½V � ðV=�Þ!t�e�jn!t dð!tÞ

� �

¼
V

2�2

ð0
��

!te�jn!t dð!tÞ þ

ð�
0

ð�!tÞe�jn!t dð!tÞ þ

ð�
��

�e�jn!t dð!tÞ

� �

¼
V

2�2
e�jn!t

ð�jnÞ2
ð�jn!t� 1Þ

� �0
��

�
e�jn!t

ð�jnÞ2
ð�jn!t� 1Þ

� ��
0

( )
¼

V

�2n2
ð1� e jn�Þ

For even n, e jn� ¼ þ1 and An ¼ 0; for odd n, An ¼ 2V=�2n2. Thus the series is

f ðtÞ ¼ � � � þ
2V

ð�3�Þ2
e�j3!t

þ
2V

ð��Þ2
e�j!t

þ
V

2
þ

2V

ð�Þ2
e j!t þ

2V

ð3�Þ2
e j3!t þ � � �

The harmonic amplitudes

c0 ¼
V

2
cn ¼ 2jAnj ¼

0 ðn ¼ 2; 4; 6; . . .Þ
4V=�2n2 ðn ¼ 1; 3; 5; . . .Þ

�

are exactly as plotted in Fig. 17-21.
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17.10 Find the exponential Fourier series for the half-wave rectified sine wave shown in Figs. 17-26 and
17-34, and sketch the line spectrum.

In the interval 0 < !t < �, f ðtÞ ¼ V sin!t; and from � to 2�, f ðtÞ ¼ 0. Then

An ¼
1

2�

ð�
0

V sin!t e�jn!t dð!tÞ

¼
V

2�

e�jn!t

ð1� n2Þ
ð�jn sin!t� cos!tÞ

� ��
0

¼
Vðe�jn�

þ 1Þ

2�ð1� n2Þ

For even n, An ¼ V=�ð1� n2Þ; for odd n, An ¼ 0. However, for n ¼ 1, the expression for An becomes

indeterminate. L’Hôpital’s rule may be applied; in other words, the numerator and denominator are

separately differentiated with respect to n, after which n is allowed to approach 1, with the result that

A1 ¼ �jðV=4Þ.

The average value is

A0 ¼
1

2�

ð�
0

V sin!t dð!tÞ ¼
V

2�

h
� cos!t

i�
0
¼

V

�

Then the exponential Fourier series is

f ðtÞ ¼ � � � �
V

15�
e�j4!t

�
V

3�
e�j2!t

þ j
V

4
e�j!t

þ
V

�
� j

V

4
e j!t �

V

3�
e j2!t �

V

15�
e j4!t � � � �

The harmonic amplitudes,

c0 ¼ A0 ¼
V

�
cn ¼ 2jAnj ¼

2V=�ðn2 � 1Þ ðn ¼ 2; 4; 6; . . .Þ
V=2 ðn ¼ 1Þ
0 ðn ¼ 3; 5; 7; . . .Þ

8<
:

are exactly as plotted in Fig. 17-27.

17.11 Find the average power in a resistance R ¼ 10 �, if the current in Fourier series form is
i ¼ 10 sin!tþ 5 sin 3!tþ 2 sin 5!t (A).

The current has an effective value Ieff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð10Þ2 þ 1

2
ð5Þ2 þ 1

2
ð2Þ2

q
¼

ffiffiffiffiffiffiffiffiffi
64:5

p
¼ 8:03 A. Then the average

power is P ¼ I2effR ¼ ð64:5Þ10 ¼ 645 W.

Another Method

The total power is the sum of the harmonic powers, which are given by 1
2
VmaxImax cos �. But the

voltage across the resistor and the current are in phase for all harmonics, and �n ¼ 0. Then,

vR ¼ Ri ¼ 100 sin!tþ 50 sin 3!tþ 20 sin 5!t

and P ¼ 1
2
ð100Þð10Þ þ 1

2
ð50Þð5Þ þ 1

2
ð20Þð2Þ ¼ 645 W.

17.12 Find the average power supplied to a network if the applied voltage and resulting current are

v ¼ 50þ 50 sin 5� 103tþ 30 sin 104tþ 20 sin 2� 104t ðVÞ

i ¼ 11:2 sin ð5� 103tþ 63:48Þ þ 10:6 sin ð104tþ 458Þ þ 8:97 sin ð2� 104tþ 26:68Þ ðAÞ
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The total average power is the sum of the harmonic powers:

P ¼ ð50Þð0Þ þ 1
2
ð50Þð11:2Þ cos 63:48þ 1

2
ð30Þð10:6Þ cos 458þ 1

2
ð20Þð8:97Þ cos 26:68 ¼ 317:7 W

17.13 Obtain the constants of the two-element series circuit with the applied voltage and resultant
current given in Problem 17.12.

The voltage series contains a constant term 50, but there is no corresponding term in the current series,

thus indicating that one of the elements is a capacitor. Since power is delivered to the circuit, the other

element must be a resistor.

Ieff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð11:2Þ2 þ 1

2
ð10:6Þ2 þ 1

2
ð8:97Þ2

q
¼ 12:6 A

The average power is P ¼ I2effR, from which R ¼ P=I2eff ¼ 317:7=159:2 ¼ 2 �.

At ! ¼ 104 rad/s, the current leads the voltage by 458. Hence,

1 ¼ tan 458 ¼
1

!CR
or C ¼

1

ð104Þð2Þ
¼ 50 mF

Therefore, the two-element series circuit consists of a resistor of 2 � and a capacitor of 50 mF.

17.14 The voltage wave shown in Fig. 17-35 is applied to a series circuit of R ¼ 2 k� and L ¼ 10 H.
Use the trigonometric Fourier series to obtain the voltage across the resistor. Plot the line
spectra of the applied voltage and vR to show the effect of the inductance on the harmonics.
! ¼ 377 rad/s.

The applied voltage has average value Vmax=�, as in Problem 17.5. The wave function is even and

hence the series contains only cosine terms, with coefficients obtained by the following evaluation integral:

an ¼
1

�

ð�=2
��=2

300 cos!t cos n!t dð!tÞ ¼
600

�ð1� n2Þ
cos n�=2 V

Here, cos n�=2 has the value �1 for n ¼ 2; 6; 10; . . . ; and þ1 for n ¼ 4; 8; 12; . . . . For n odd, cos n�=2 ¼ 0.

However, for n ¼ 1, the expression is indeterminate and must be evaluated separately.

a1 ¼
1

�

ð�=2
��=2

300 cos2 !t dð!tÞ ¼
300

�

!t

2
þ
sin 2!t

4

� ��=2
��=2

¼
300

2
V

v ¼
300

�
1þ

�

2
cos!tþ

2

3
cos 2!t�

2

15
cos 4!tþ

2

35
cos 6!t� � � �

� �
ðVÞThus,

In Table 17-3, the total impedance of the series circuit is computed for each harmonic in the voltage

expression. The Fourier coefficients of the current series are the voltage series coefficients divided by the Zn;

the current terms lag the voltage terms by the phase angles �n.
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I0 ¼
300=�

2
mA

i1 ¼
300=2

4:26
cos ð!t� 628Þ ðmAÞ

i2 ¼
600=3�

7:78
cos ð2!t� 75:18Þ ðmAÞ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then the current series is

i ¼
300

2�
þ

300

ð2Þð4:26Þ
cos ð!t� 628Þ þ

600

3�ð7:78Þ
cos ð2!t� 75:18Þ

�
600

15�ð15:2Þ
cos ð4!t� 82:458Þ þ

600

35�ð22:6Þ
cos ð6!t� 84:928Þ � � � � ðmAÞ

and the voltage across the resistor is

vR ¼ Ri ¼ 95:5þ 70:4 cos ð!t� 628Þ þ 16:4 cos ð2!t� 75:18Þ

� 1:67 cos ð4!t� 82:458Þ þ 0:483 cos ð6!t� 84:928Þ � � � � ðVÞ

Figure 17-36 shows clearly how the harmonic amplitudes of the applied voltage have been reduced by

the 10-H series inductance.

17.15 The current in a 10-mH inductance has the waveform shown in Fig. 17-37. Obtain the trigono-
metric series for the voltage across the inductance, given that ! ¼ 500 rad/s.
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Table 17-3

n n!, rad/s R, k� n!L; k� Zn; k� �n

0 0 2 0 2 08
1 377 2 3.77 4.26 628
2 754 2 7.54 7.78 75.18
4 1508 2 15.08 15.2 82.458
6 2262 2 22.62 22.6 84.928

Fig. 17-36

Fig. 17-37



The derivative of the waveform of Fig. 17-37 is graphed in Fig. 17-38. This is just Fig. 17-18 with

V ¼ �20=�. Hence, from Problem 17.1,

di

dð!tÞ
¼ �

80

�2
ðsin!tþ 1

3
sin 3!tþ 1

5
sin 5!tþ � � �Þ ðAÞ

vL ¼ L!
di

dð!tÞ
¼ �

400

�2
ðsin!tþ 1

3
sin 3!tþ 1

5
sin 5!tþ � � �Þ ðVÞand so

Supplementary Problems

17.16 Synthesize the waveform for which the trigonometric Fourier series is

f ðtÞ ¼
8V

�2
fsin!t� 1

9
sin 3!tþ 1

25
sin 5!t� 1

49
sin 7!tþ � � �g

17.17 Synthesize the waveform if its Fourier series is

f ðtÞ ¼ 5�
40

�2
ðcos!tþ 1

9
cos 3!tþ 1

25
cos 5!tþ � � �Þ

þ
20

�
ðsin!t� 1

2
sin 2!tþ 1

3
sin 3!t� 1

4
sin 4!tþ � � �Þ

17.18 Synthesize the waveform for the given Fourier series.

f ðtÞ ¼ V

�
1

2�
�

1

�
cos!t�

1

3�
cos 2!tþ

1

2�
cos 3!t�

1

15�
cos 4!t�

1

6�
cos 6!tþ � � �

þ
1

4
sin!t�

2

3�
sin 2!tþ

4

15�
sin 4!t� � � �

�

17.19 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-39 and plot the line spectrum.

Compare with Example 17.1.

Ans: f ðtÞ ¼
V

2
þ
V

�
ðsin!tþ 1

2
sin 2!tþ 1

3
sin 3!tþ � � �Þ
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17.20 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-40 and plot the spectrum.

Compare with the result of Problem 17.3.

Ans: f ðtÞ ¼
�2V

�
fsin!tþ 1

2
sin 2!tþ 1

3
sin 3!tþ 1

4
sin 4!tþ � � �g

17.21 Find the trigonometric Fourier series for the waveform shown in Fig. 17-41 and plot the line spectrum.

Ans: f ðtÞ ¼
4V

�2
fcos!tþ 1

9
cos 3!tþ 1

25
cos 5!tþ � � �g �

2V

�
fsin!tþ 1

3
sin 3!tþ 1

5
sin 5!tþ � � �g

17.22 Find the trigonometric Fourier series of the square wave shown in Fig. 17-42 and plot the line spectrum.

Compare with the result of Problem 17.1.

Ans: f ðtÞ ¼
4V

�
fcos!t� 1

3
cos 3!tþ 1

5
cos 5!t� 1

7
cos 7!tþ � � �g

17.23 Find the trigonometric Fourier series for the waveforms shown in Fig. 17-43. Plot the line spectrum of each

and compare.

Ans: ðaÞ f ðtÞ ¼
5

12
þ
X1
n¼1

10

n�
sin

n�

12

� 	
cos n!tþ

10

n�
1� cos

n�

12

� 	
sin n!t

� �

ðbÞ f ðtÞ ¼
50

6
þ
X1
n¼1

10

n�
sin

n5�

3

� �
cos n!tþ

10

n�
1� cos

n5�

3

� �
sin n!t

� �

17.24 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-44 and plot the

line spectrum. Compare the answer with the results of Problems 17.5 and 17.6.

Ans: f ðtÞ ¼
V

�
1þ

�

2
cos!tþ

2

3
cos 2!t�

2

15
cos 4!tþ

2

35
cos 6!t� � � �

� �
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17.25 Find the trigonometric Fourier series for the full-wave-rectified sine wave shown in Fig. 17-45 and plot the

spectrum.

Ans: f ðtÞ ¼
2V

�
ð1þ 2

3
cos 2!t� 2

15
cos 4!tþ 2

35
cos 6!t� � � �Þ

17.26 The waveform in Fig. 17-46 is that of Fig. 17-45 with the origin shifted. Find the Fourier series and show

that the two spectra are identical.

Ans: f ðtÞ ¼
2V

�
ð1� 2

3
cos 2!t� 2

15
cos 4!t� 2

35
cos 6!t� � � �Þ

17.27 Find the trigonometric Fourier series for the waveform shown in Fig. 17-47.

Ans: f ðtÞ ¼
V

2�
�

V

2�
cos!tþ

X1
n¼2

V

�ð1� n2Þ
ðcos n�þ n sin n�=2Þ cos n!t

þ
V

4
sin!tþ

X1
n¼2

�nV cos n�=2

�ð1� n2Þ

� �
sin n!t

17.28 Find the trigonometric Fourier series for the waveform shown in Fig. 17-48. Add this series termwise to

that of Problem 17.27, and compare the sum with the series obtained in Problem 17.5.

Ans: f ðtÞ ¼
V

2�
þ

V

2�
cos!tþ

X1
n¼2

Vðn sin n�=2� 1Þ

�ðn2 � 1Þ
cos n!tþ

V

4
sin!tþ

X1
n¼2

nV cos n�=2

�ð1� n2Þ
sin n!t
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17.29 Find the exponential Fourier series for the waveform shown in Fig. 17-49 and plot the line spectrum.

Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric

series, and compare it with the result of Problem 17.4.

Ans: f ðtÞ ¼ V

�
� � � þ

1

9�2
� j

1

6�

� �
e�j3!t

� j
1

4�
e�j2!t

�
1

�2
� j

1

2�

� �
e�j!t

þ
1

4

�
1

�2
þ j

1

2�

� �
e j!t þ j

1

4�
e j2!t �

1

9�2
þ j

1

6�

� �
e j3!t � � � �

�

17.30 Find the exponential Fourier series for the waveform shown in Fig. 17-50 and plot the line spectrum.

Ans: f ðtÞ ¼ V

�
� � � þ

1

9�2
þ j

1

6�

� �
e�j3!t

þ j
1

4�
e�j2!t

þ
1

�2
þ j

1

2�

� �
e�j!t

þ
1

4

þ
1

�2
� j

1

2�

� �
e j!t � j

1

4�
e j2!t þ

1

9�2
� j

1

6�

� �
e j3!t þ � � �

�

17.31 Find the exponential Fourier series for the square wave shown in Fig. 17-51 and plot the line spectrum. Add

the exponential series of Problems 17.29 and 17.30 and compare the sum to the series obtained here.

Ans: f ðtÞ ¼ V � � � þ j
1

3�
e�j3!t

þ j
1

�
e�j!t

þ
1

2
� j

1

�
e j!t � j

1

3�
e j3!t � � � �

� �

17.32 Find the exponential Fourier series for the sawtooth waveform shown in Fig. 17-52 and plot the spectrum.

Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric

series, and compare the results with the series obtained in Problem 17.19.

Ans: f ðtÞ ¼ V � � � þ j
1

4�
e�j2!t

þ j
1

2�
e�j!t

þ
1

2
� j

1

2�
e j!t � j

1

4�
e j2!t � � � �

� �

17.33 Find the exponential Fourier series for the waveform shown in Fig. 17-53 and plot the spectrum. Convert

the trigonometric series coefficients found in Problem 17.20 into exponential series coefficients and compare

them with the coefficients of the series obtained here.

Ans: f ðtÞ ¼ V � � � � j
1

2�
e�j2!t

� j
1

�
e�j!t

þ j
1

�
e j!t þ j

1

2�
e j2!t þ � � �

� �

CHAP. 17] FOURIER METHOD OF WAVEFORM ANALYSIS 447

Fig. 17-50 Fig. 17-51

Fig. 17-52 Fig. 17-53



17.34 Find the exponential Fourier series for the waveform shown in Fig. 17-54 and plot the spectrum. Convert

the coefficients to trigonometric series coefficients, write the trigonometric series, and compare it with that

obtained in Problem 17.21.

Ans: f ðtÞ ¼ V

�
� � � þ

2

9�2
� j

1

3�

� �
e�j3!t

þ
2

�2
� j

1

�

� �
e�j!t

þ
2

�2
þ j

1

�

� �
e j!t

þ
2

9�2
þ j

1

3�

� �
e j3!t þ � � �

�

17.35 Find the exponential Fourier series for the square wave shown in Fig. 17-55 and plot the line spectrum.

Convert the trigonometric series coefficients of Problem 17.22 into exponential series coefficients and com-

pare with the coefficients in the result obtained here.

Ans: f ðtÞ ¼
2V

�
ð� � � þ 1

5
e�j5!t

� 1
3
e�j3!t

þ e�j!t
þ e j!t � 1

3
e�j3!t

þ 1
5
e j5!t � � � �Þ

17.36 Find the exponential Fourier series for the waveform shown in Fig. 17-56 and plot the line spectrum.

Ans: f ðtÞ ¼ � � � þ
V

2�
sin

2�

6

� �
e�j2!t

þ
V

�
sin

�

6

� 	
e�j!t

þ
V

6
þ
V

�
sin

�

6

� 	
e j!t

þ
V

2�
sin

2�

6

� �
e j2!t þ � � �

17.37 Find the exponential Fourier series for the half-wave-rectified sine wave shown in Fig. 17-57. Convert these

coefficients into the trigonometric series coefficients, write the trigonometric series, and compare it with the

result of Problem 17.24.

Ans: f ðtÞ ¼ � � � �
V

15�
e�j4!t

þ
V

3�
e�j2!t

þ
V

4
e�j!t

þ
V

�
þ
V

4
ej!t þ

V

3�
ej2!t �

V

15�
ej4!t þ � � �

17.38 Find the exponential Fourier series for the full-wave rectified sine wave shown in Fig. 17-58 and plot the line

spectrum.

Ans: f ðtÞ ¼ � � � �
2V

15�
e�j4!t

þ
2V

3�
e�j2!t

þ
2V

�
þ
2V

3�
e j2!t �

2V

15�
e j4!t þ � � �
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17.39 Find the effective voltage, effective current, and average power supplied to a passive network if the applied

voltage is v ¼ 200þ 100 cos ð500tþ 308Þ þ 75 cos ð1500tþ 608Þ (V) and the resulting current is

i ¼ 3:53 cos ð500tþ 758Þ þ 3:55 cos ð1500tþ 78:458Þ (A). Ans: 218.5V, 3.54A, 250.8W

17.40 A voltage v ¼ 50þ 25 sin 500tþ 10 sin 1500tþ 5 sin 2500t (V) is applied to the terminals of a passive net-

work and the resulting current is

i ¼ 5þ 2:23 sin ð500t� 26:68Þ þ 0:556 sin ð1500t� 56:38Þ þ 0:186 sin ð2500t� 68:28Þ ðAÞ

Find the effective voltage, effective current, and the average power. Ans: 53.6V, 5.25A, 276.5W

17.41 A three-element series circuit, with R ¼ 5 �, L ¼ 5 mH, and C ¼ 50 mF, has an applied voltage

v ¼ 150 sin 1000tþ 100 sin 2000tþ 75 sin 3000t (V). Find the effective current and the average power for

the circuit. Sketch the line spectrum of the voltage and the current, and note the effect of series resonance.

Ans: 16.58A, 1374W

17.42 A two-element series circuit, with R ¼ 10 � and L ¼ 20 mH, has current

i ¼ 5 sin 100tþ 3 sin 300tþ 2 sin 500t ðAÞ

Find the effective applied voltage and the average power. Ans: 48V, 190W

17.43 A pure inductance, L ¼ 10 mH, has the triangular current wave shown in Fig. 17-59, where ! ¼ 500 rad/s.

Obtain the exponential Fourier series for the voltage across the inductance. Compare the answer with the

result of Problem 17.8.

Ans: vL ¼
200

�2
ð� � � � j 1

3
e�j3!t

� je�j!t
þ je j!t þ j 1

3
e j!t þ � � �Þ ðVÞ

17.44 A pure inductance, L ¼ 10 mH, has an applied voltage with the waveform shown in Fig. 17-60, where

! ¼ 200 rad/s. Obtain the current series in trigonometric form and identify the current waveform.

Ans: i ¼
20

�
ðsin!t� 1

9
sin 3!tþ 1

25
sin 5!t� 1

49
sin 7!tþ � � �Þ ðAÞ; triangular

17.45 Figure 17-61 shows a full-wave-rectified sine wave representing the voltage applied to the terminals of an

LC series circuit. Use the trigonometric Fourier series to find the voltages across the inductor and the

capacitor.
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Ans: vL ¼
4Vm

�

2!L

3 2!L�
1

2!C

� � cos 2!t�
4!L

15 4!L�
1

4!C

� � cos 4!tþ � � �

2
664

3
775

vC ¼
4Vm

�

1

2
�

1

3ð2!CÞ 2!L�
1

2!C

� � cos 2!tþ
1

15ð4!CÞ 4!L�
1

4!C

� � cos 4!t� � � �

2
664

3
775

17.46 A three-element circuit consists of R ¼ 5 � in series with a parallel combination of L and C. At

! ¼ 500 rad/s, XL ¼ 2 �, XC ¼ 8 �. Find the total current if the applied voltage is given by

v ¼ 50þ 20 sin 500tþ 10 sin 1000t (V). Ans: i ¼ 10þ 3:53 sin ð500t� 28:18Þ (A)
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