
 

 

Physics 360/460 Intermediate Laboratory  
Experiment #25 

Measurements of Acoustic Systems with Maximum-Length Sequences 
 
 
Abstract 
 
A maximum-length sequence (MLS) is a computer-generated sequence of 1s and 0s that 
acts like random noise, but is deterministic and periodic.  Excitation and subsequent 
cross-correlation by an MLS is an efficient time-domain method to identify a system.  
The resulting periodic impulse response can be transformed to the frequency domain 
where it becomes the frequency response of the system.  Such a system (CLIO) is used to 
measure an electronic filter, make quasi-anechoic measurements of a loudspeaker in a 
normal room, and finally to evaluate the reverberation decay of a room in octave bands. 
 
Background 
 
In order to measure the gain and phase of a linear system as a function of frequency, the 
so-called frequency response, it is necessary to excite the system with a signal that covers 
completely the frequency band of interest.  Signals at both the input and output must be 
captured and analyzed to obtain this response.  One such suitable signal is the Dirac δ-
function, which has a Fourier transform that is a constant at all frequencies, representing a 
perfect response.  This particular input signal has a known spectrum, so it is only 
necessary to measure the output of the system to determine the system response. 
 
If a delta-function input signal δ(t) is applied to a linear system, the resulting output is 
called the impulse response h(t).  Now, the input x(t) can be thought of as a series of 
weighted δ-functions, such that: 
 
 x(t) = ∫ x(τ) δ(t-τ) dτ. 
 
The integrand only gives a contribution when the argument of the δ-function goes to zero, 
when τ=t.  The δ-function has unit area, and when integrated gives a contribution of 
unity, multiplying the factor x(τ) which thus gives x(t).  This is the simplest of 
convolutions; convolution by a δ-function does not change a function. 
 
If a signal x(t) is applied to the system, it can be written as an integral of weighted δ-
function contributions as above.  The output of each δ-function results in the response 
h(t-τ), but now weighted by the function x(τ).  Hence the output y(t) is the convolution of 
h(t) with x(t).  The result is ( the symbol ** stands for convolution): 
 
 y(t) = h(t) ** x(t) = ∫ h(t−τ) x(τ) dτ, or due to symmetry, = ∫ x(t−τ) h(τ) dτ. 
 
It is easily shown that the Fourier transform of a convolution is the product of the Fourier 
transform of the two functions in the convolution, so that: 



 

 

 
 Y(ω) = H(ω) X(ω), 
 
in which each capitalized term is the Fourier transform of the corresponding time-domain 
function.  Now, Y(ω) and X(ω) are respectively the frequency spectra of the input and 
output signals of the system under consideration, and thus H(ω)=Y(ω)/X(ω) is the desired 
frequency response of the system, being a complex number that is usually represented as 
magnitude response and phase angle.  But H(ω) is the Fourier transform of h(t), the 
impulse response of the system.  Thus we have shown that the impulse response and the 
frequency response are related by the Fourier transform.  We call h(t) the time-domain 
response of the system, and H(ω) its associated frequency-domain response.  They are 
interchangeable under Fourier transformation.  Either is a complete description of the 
system. 
 
In the CLIO measurement system, instead of a δ-function, a noise-like sequence is 
generated from the binary output of a shift register containing 14 bits.  If outputs 2, 12, 13 
and 14 (that is one possible configuration) are fed to an exclusive-OR tree and fed back to 
the input, the register goes through all possible states in quite a random way, except the 
all-zero state which would perpetuate just itself.  Thus such an MLS has a length of 
214−1=16383 samples.  At a sampling rate of 51.2 kHz, it would repeat about 3 times a 
second.  This is easily heard when such a signal is fed to a loudspeaker, as in the second 
experiment of this laboratory.  The 1’s and 0’s produced by the shift register are mapped 
to signals of −V and +V, in which case the exclusive-OR operations are replaced by 
multiplication. 
 
In this experiment, the time-domain response of the system under test is measured by the 
aforementioned MLS technique.  Instead of a δ-function, the input signal is the MLS-
generated sequence of +V’s and −V’s.  However, the cyclic auto-correlation function of 
this sequence is essentially a δ-function.  It is easily shown that when the system output is 
cyclically cross-correlated with the original sequence of +1’s and −1’s, the result is the 
cyclic or periodic impulse response h(t) of the system, just as though an actual impulse 
had been used.  There is a surprisingly efficient way to do the cross-correlation since it 
requires only addition and subtraction.  Note that the MLS excitation sequence has much 
nicer signal properties than a δ-function, which is usually represented by a single sample 
of quite high amplitude.  This can cause overload or other unwanted behaviour, but is 
completely avoided by the MLS signal. 
 
In order to make the impulse response meaningful, it should decay adequately in one 
period (16383 samples).  This is easily arranged for most typical measurements.  The 
computer can readily Fourier transform the impulse response h(t) to give the frequency 
response H(ω). 
 
In this experiment, the signals are all represented by discrete-time sequences.  All the 
foregoing theory is valid for discrete time, with the Discrete Fourier Transform (DFT) 
taking the place of the continuous-time transform.  This transform is easily calculated by 



 

 

computers, since very fast algorithms are available which exploit the features of signals 
that can be represented by 2M data points, where M is an integer.  For the CLIO system, 
M=13, which results in 8192 data points.  This represents a total analysis time of 160 ms 
at a sampling frequency of 51.2 kHz.  When transformed the DFT gives 4096 complex 
frequency points, separated in frequency by 6.25 Hz. 
 
The frequency domain is usually displayed in magnitude (often in dB) and phase angle 
(°).  The dB or decibel is defined by: 
 
 dB = 20 log (magnitude/[reference magnitude]) = 10 log (power/[ref. Power]). 
 
The reference magnitude is often chosen as the measurement when certain initial 
conditions are applied to the system, for example, in a loop-back measurement in which 
we would consider the gain to be unity. 
 
The resolution of a measuring system is determined by the length of time it is observed.  
An observation time τ results in a frequency resolution 1/τ.  This means that if we 
truncate an impulse response to say, 3 ms, the resolution will be 333 Hz, even if we use a 
very large number of points in the DFT.  The data will be smooth, but the resolution will 
be poor.  In the CLIO system the DFT is always 160 ms long, corresponding to a 
frequency separation between points of 6.25 Hz, but the resolution will depend on the 
actual length of the chosen data portion. 
 
Preliminary Experiment: Normalization of the gain and time delays. 
 
With the cables attached to the A-channel input and output (see first few pages of the 
manual), connect them together for a loop-back measurement.  The MLS Analyze mode 
should be used.  Signal levels should be around 1 volt.  The periodic impulse response 
will show some time delay.  To go to the time domain click the X in the upper right 
corner of the frequency domain display.  This is due to the anti-aliasing filter in the 
analogue-to-digital converter, and to other clocked processes.  Record this minimum 
delay for your later experiments.  The frequency response (click FREQ) gives the 
response in dB that represents unity gain for the analyzer settings.  Note it as well.  
Students should find that the loop-back experiment gives a very sharp h(t) and a flat 
H(ω). 
 
Experiment 1: Time and Frequency responses of a filter. 
 
Simple resistor-capacitor networks can provide low-pass (LP) or high-pass (HP) filtering 
operations.  Make sure you understand (from P252/253 or P352 courses) the expected 
time- and frequency-domain responses from such devices.  For simple RC filters, the 
angular frequency ω of the breakpoint is given by: 
 
 ωRC=1. 
 



 

 

Measure each of the networks you are given and print out the impulse and frequency 
responses over appropriate ranges.  Calculate the theoretical time constant of each 
network and compare with the value measured from the graph.  Calculate the measured 
frequency breakpoint of each network (where the two asymptotic straight lines meet) and 
compare with theory.  Note that the gain of the low-pass filter is not close to unity.  
Explain this behaviour, which is due to the 64k-ohm input resistance of the CLIO input.  
This resistance represents a significant load relative to the resistors in the filter.  It must 
also be taken into account to calculate the time constants and break-point frequencies for 
both the LP and HP filters. 
 
Experiment 2: Frequency response of a loudspeaker. 
 
Connect the CLIO input and output to the external amplifier box.  This unit contains a 
power amplifier to drive a loudspeaker, and also supplies power to the active microphone 
that is plugged into it.  The mic has a rubber guard that should be removed when in use.  
Connect the loudspeaker to the amplifier output binding posts, and place the microphone 
about ½ m directly in front of it, on the tweeter axis.  Remove all possible obstructions to 
maximize the reflection-free time.  Do an analysis and view the impulse response.  The 
extra acoustic delay should be clearly visible, with a sharp initial response followed by 
reflections from the room.  Print the response. 
 
The portion of h(t) chosen for frequency analysis can be set by moving the cursor to the 
desired spot and using the START and STOP buttons.  Print out frequency responses for 
all the time data (160 ms), and for truncated "quasi-anechoic" impulse responses using 
points 1 ms and 5 ms past the start of the data.  Compare the frequency responses and 
comment.  By looking at the very first portion of h(t), make an estimate of the speed of 
sound.  You will need to correct for the minimum delay measured in the preliminary 
experiment.  Comment on why it is not possible in a normal room to quasi-anechoically 
measure the lowest frequencies. 
 
Repeat the measurement with the loudspeaker and the mic placed near a wall so that a 
strong reflection occurs, say 2 ms after the main impulse response, using 5 ms of time 
data.  Explain the undulations in the frequency response, and their separation in 
frequency. 
 
Experiment 3: Reverberation of a Room 
 
When sound produced in a room is suddenly turned off, it usually decays exponentially, 
so the plot of dB versus time is a straight line.  The reverberation time RT60 is defined as 
the time for the sound to decay by 60dB, to one millionth of its power.  The noise often 
prevents decay by 60dB, so the slope of the linear portion is extended to make the 
determination.  The decay in each frequency range can be calculated by filtering h(t), 
squaring it, and time-reverse integrating the result.  This "Schroeder plot" is a very useful 
derivation from the impulse response, and the procedure is implemented by the CLIO 
system. 



 

 

 
Place the loudspeaker quite far from the microphone to simulate a source and more 
distant listener.  Set up the CLIO system to measure the reverberation decay (Acoustics: 
RT60).  Click all the frequency ranges from 63 Hz to 8 kHz.  In this mode the system 
measures the impulse response for various filtered excitations at several different 
sampling rates, and uses them to calculate the data.  The calculation of the reverberation 
time is carried out between the black horizontal lines (you can select the levels) on the 
integrated Schroeder plot that the CLIO system provides.  You will have to employ a 
hand analysis of the data since the noise floor generally prevents the decay from being 
sufficient.  Print the decay curves for 125, 500, 2000, and 8000 Hz (expand the horizontal 
axis if necessary) to do the calculation. 
 
Plot the reverberation time above as a function of frequency.  Repeat the experiment with 
the door to the room left open, or placing absorbers in the room if available.  Explain the 
results.  Comment on the variation of the reverb time at both the lower frequencies and 
higher frequencies.  The room used for the experiment has drywall panels which have 
quite a lot of low -frequency absorption. 

_______________________________________________________________ 


