Experiment 1: Measurement of the gyromagnetic ratio

Gyromagnetic ratio of the electron: the ratio of the magnetic dipole moment to the angular momentum of the electron and a fundamental constant of physics.

Classically, a spinning electron has a magnetic moment

$$
\mu=\mathrm{I} A=(-\mathrm{e} v / 2 \pi \mathrm{r})\left(\pi \mathrm{r}^{2}\right)
$$

and angular momentum $L=m_{e}$ v r
where r is the radius of the electron, v is electron velocity and A is area.
Then

$$
\gamma=(\mathrm{IA}) / \mathrm{L}=-\mathrm{e} /\left(2 \mathrm{~m}_{\mathrm{e}}\right)
$$

Quantum mechanically, the electron has a spin $s=1 / 2$ and spin angular momentum

$$
\mathrm{L}_{\mathrm{s}}=(\mathrm{h} / 2 \pi)(\mathrm{s}(\mathrm{~s}+1))^{1 / 2}
$$

The magnetic dipole moment is

$$
\mu_{\mathrm{s}}=-\mathrm{ge}(\mathrm{~s}(\mathrm{~s}+1))^{1 / 2}\left(\mathrm{~h} / 2 \pi \mathrm{~m}_{\mathrm{e}}\right)
$$

where g is called the g-factor and comes from relativistic quantum mechanics as a solution of the Dirac equation. For the electron

$$
\mathrm{g}=2(1+(\alpha / 2 \pi)+\ldots) \quad(\sim \text { twice as large as the classical result })
$$

α is the fine structure constant $\approx 1 / 137$ and measures the strength of the em interaction.

$$
\gamma_{\mathrm{e}}=\left(\mathrm{e} / \mathrm{m}_{\mathrm{e}}\right) \quad \mathrm{rad} / \mathrm{sec} \text { tesla }
$$

$$
\gamma_{\mathrm{e}} / 2 \pi=28.025 \times 10^{3} \mathrm{MHz} / \text { tesla }
$$

is the angular precession frequency for an electron spin in an applied magnetic field.

The presence of spin in the electron can be seen in the spectrum of the H atom. The spectrum of an H atom placed in an external B field will show a doubling of its energy levels. The energy difference $\Delta \mathrm{E}$ is incorrectly predicted from the classical theory

Spin "down"
The spins are not completely aligned with the applied B field, but precess at an angular frequency, $\gamma_{\mathrm{e}} \mathrm{B}$ about the direction of B .

The Bainbridge experiment enables measurement of e / m_{e} by measuring the path of an electron with a defined velocity in a magnetic field.

The velocity is obtained by accelerating the electron through a given potential difference.

The final measurement is obtained by imaging the electron path in a gas and recording the radius of the circular path of the electron in an applied field.

Electrons are boiled from a heated filament and accelerated through a potential difference V. then

$$
\mathrm{eV}=\mathrm{m}_{\mathrm{e}} \mathrm{v}^{2} / 2
$$

and

$$
\mathrm{e} / \mathrm{m}_{\mathrm{e}}=\mathrm{v}^{2} / 2 \mathrm{~V}
$$

Typically, $\mathrm{V}=20$ volts $\rightarrow \mathrm{v}=2.65 \times 10^{6} \mathrm{~m} / \mathrm{sec}$

The velocity v can be measured by obtaining the radius r of the electron track in a constant magnetic field, B

The Lorentz force on a charge, q , moving with velocity, \mathbf{v}, in a magnetic field, \mathbf{B}, is

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}
$$

Since this force must always be perpendicular to \mathbf{v},
a) no work is done by the field B on the charge
b) the charge moves in a circular path in a plane perpendicular to \mathbf{B}

Looking down a field line it is apparent that the force, \mathbf{F}, provides a centripetal acceleration as q moves in a circular path around a point in space.

Then (taking the vector cross product and $\mathrm{m}=\mathrm{m}_{\mathrm{e}}$)

$$
\left(m v^{2} / r\right)=e v B
$$

so that $\quad e / m=(v / B r)$
The circular path (this only happens in a constant B field) is characterized by the cyclotron radius

$$
\mathrm{r}=(\mathrm{mv}) /(\mathrm{qB})
$$

and the cyclotron frequency,

$$
\omega=(\mathrm{v} / \mathrm{r})=(\mathrm{q} B) / \mathrm{m}
$$

The period of the circular motion, T, is

$$
\mathrm{T}=(2 \pi / \omega)=(2 \pi \mathrm{~m}) /(\mathrm{q} B)
$$

For example,

Proton, $\mathrm{v}=10^{6} \mathrm{~m} / \mathrm{sec}$ with $\mathrm{B}=0.1$ tesla

$$
\begin{aligned}
& \mathrm{r}=\mathrm{mv} / \mathrm{qB}=\left(1.67 \times 10^{-27} \times 10^{6}\right) /\left(1.6 \times 10^{-19} \times 0.1\right)=0.104 \text { meter } \\
& \omega=\mathrm{v} / \mathrm{r}=10^{7} \mathrm{rad} / \mathrm{sec} \\
& \mathrm{~T}=2 \pi / \omega=6.3 \times 10^{-7} \mathrm{sec}
\end{aligned}
$$

Electron, $\mathrm{v}=10^{6} \mathrm{~m} / \mathrm{sec}$ with $\mathrm{B}=0.1$ tesla

$$
\begin{aligned}
& \mathrm{r}=\left(9.1 \times 10^{-31} \times 10^{6}\right) /\left(1.6 \times 10^{-19} \times 0.1\right)=5.9 \times 10^{-5} \text { meter } \\
& \omega=1.8 \times 10^{10} \mathrm{rad} / \mathrm{sec} \\
& \mathrm{~T}=3.6 \times 10^{-10} \mathrm{sec}
\end{aligned}
$$

Our value for V is typically 20-60 volts in Expt. 1 and $\mathrm{r} \approx 0.1 \mathrm{~m}$, so a much smaller B field is necessary ($\sim 10^{-4}$ tesla or $10^{5} \mathrm{nT}$). This can be obtained from the Helmholtz coils, but compensation is required for the Earth's B field as this is ~ $5 \times 10^{4} \mathrm{nT}$.

