
CS 135 Fall 2008
Byron Weber Becker, Ian Goldberg, Brad Lushman, Daniel Roche, Troy Vasiga

Assignment 10
Due Monday, December 1, 10:30am

Files to submit:book.ss, edge.ss, puzzle.ss and (for the bonus)
decline.ss, 2dpuzzle.ss .

Language level: Intermediate Student with Lambda
Warmup Exercises: (Not to be submitted) 28.1.4, 30.1.1, 31.3.2
Extra practice exercises: (Not to be submitted) 28.2.1-4, 31.3.8, 32.2.1-8

1. Do HtDP Exercises 31.3.6 and 31.3.7, using accumulators, and place your solution inbook.ss.

2. We have seen the adjacency list representation of graphs. This question deals with another
representation, called theedge list representationof graphs. An edge list is a pair of lists: the
first list is a list of all vertices, and the second list is a list of pairs, where each pair is two
symbols, representing the start (head) and end (tail) of the edge (respectively). For example, if
graphG has an adjacency list representation of ’((A (B C D)) (B (C D)) (C ()) (D ())), thenG
would have an edge list representation of ’((A B C D) ((A B) (A C) (A D) (B C) (B D))).

In the fileedge.ss, place your solutions to the following problems:

(a) Write the functionadj-to-edgewhich consumes a graph in adjacency list representation
and produces an edge list representation for the graph.

(b) Write the functionedge-to-adjwhich consumes a graph in edge list representation and
produces the corresponding adjacency list representation. Note that edges may not be in
sorted order: that is, ’((A B C D) ((B D) (A B) (B C) (A D) (A C))) is a valid edge list
representation of the graphG described above.

(c) Write the functionreverse-graphwhich consumes a graph in adjacency list representation
and produces a graph in adjacency list representation with all the edges reversed: that is,
the direction of each edge has been reversed. For example, (reverse-graph G)⇒ ’((A ())
(D (A B)) (C (A B)) (B (A))).

3. Thefind-route function we studied in class finds a route or path from a starting node to an
ending node in an explicit graph. Games often use a similar function but with an implicit graph
– a graph in which the neighbours of a node are calculated as needed rather than looked up in
an explicit data structure.

One such game is peg solitaire. For an example of 2-D peg solitaire, seehttp://www.
mazeworks.com/peggy/index.htm . We will work with a 1-D version that is similar
(but less interesting). The rule for moving from one configuration of the game to the next is that
one peg jumps over another peg (either to the right or the left), landing in an open spot on the
1-D board. The jumped peg is removed.

For example, a starting board configuration could be represented by ’(O O O) where ’O
represents a peg and ’represents an open space. With this configuration, only one move is
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possible: the first peg jumps to the only open space, resulting in ’(O O). Again, there is only
one possible move, resulting in the ending configuration ’(O ).

The functionsolve-puzzlewill solve a one-dimensional version of the peg solitaire puzzle.
“Solve” means that it will consume a starting configuration and an ending configuration for
a game. It will produce one of:

• false, if it is impossible to reach the ending configuration according to the game’s rules,

• a list of intermediate game configurations showing how to get from the starting configura-
tion to the ending configuration.

(solve-puzzle’(O O O) ’( O )) will produce ’((O O O) ( O O) ( O )) while (solve-
puzzle’(O O O) ’(O )) will producefalse.

A data definition will be useful:

• A puzzle configuration (pzl-config) is (listof (union ’ ’O)).

You have two options in solving this question.

• Option 1: In the filepuzzle.ss write the following function:

;; solve-puzzle: pzl-config pzl-config→ (union false (listof pzl-config))
;; Solve a 1D peg puzzle where start is the starting configuration, end is the desired
;; ending configuration.
(define(solve-puzzle start end) . . .

You may write whatever helper functions you wish, but your entire automarking grade
will be based onsolve-puzzle. In order to indicate your selection for this option, define a
constantgrade-helper-functionsto falsein puzzle.ss. Of course, your solution will also be
marked for style, understandibility, etc..

• Option 2: If Option 1 seems daunting, you may wish to choose this option: this option
gives you a more structured approach to solve this problem. Define the constantgrade-
helper-functionsto true if you choose this option. Half of your autograding marks will
come from correctly implementing all the helper functions described below, and the re-
maining half will come from correctly implementingsolve-puzzle. Of course, your work
will also be marked for style, understandability, etc. If you find this option too constrain-
ing, pick Option 1. There is no Option 3.
We begin breaking down the problem ofsolve-puzzleby noting solve-puzzleis almost
identical tofind-routeexcept:

– Instead of representing nodes in the graph with symbols, as in class, nodes arepzl-
configs (see the data definition above). Therefore a path from the “origination node”
to the “destination node” is a list ofpzl-configs instead of a list of symbols. Some
parts offind-routewill need minor changes to account for this.

– The big change is inneighbours. Rather than looking up the out-neighbours in an
explicit graph, we’ll need to generate them from a givenpzl-config. The hard part of
writing solve-puzzleis writing gen-neighbours. (Note the new name, to recognize the
fact that we’re generating the neighbours.)
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There are many ways to writegen-neighbours. One strategy uses the following steps:

– We need to check for a move at each possible place in a given puzzle configuration.
So we’ll begin by making a list of all the possible ways to split a configuration.

– Now check the second part of each split to see if it begins with either ’(O O ) or ’(
O O). If it does, replace those three symbols with ’(O) and ’(O ), respectively.
If it does not, replace the entire split with a failure value such asfalse.

– Remove all of the failure values from the list of splits.

– Put the two parts of each split back together again, resulting in the list of neighbours.

These four steps for the configuration ’(O O O O) result in:

’((() (O O O O))
((O) (O O O))
((O O) ( O O))
((O O ) (O O))
((O O O) (O))
((O O O O) ()))

’((() ( O O O))
false
((O O) (O ))
false
false
false)

’((() ( O O O))
((O O) (O )))

’(( O O O)
(O O O ))

Write the following helper functions in the filepuzzle.ss :

(a) (split cfig) consumes apzl-configand produces a list of pairs. Each pair represents one
possible way to split the configuration into two pieces. This works out nicest if the
first member of the pair is the reverse of the configuration up to the split point and the
second member of the pair is what comes after the split point (slightly different from
what is shown above). The following example uses numbers for clarity. For example,
(split ’(1 2 3)) produces

’((() (1 2 3))
((1) (2 3))
((2 1) (3))
((3 2 1) ()))

An accumulator is useful for this function; abstract list functions are not.

(b) (make-move split) consumes a “split”, defined as (list pzl-config pzl-config). If the
second configuration in the split begins with either ’(O O ) or ’( O O), a newpzl-
configis produced with those three items replaced with either ’(O) or ’(O ), as
appropriate. Otherwise, the function producesfalse.

(c) (prepend rev end) consumes twopzl-configs and produces apzl-configthat is end
appended to the end ofrev reversed. You shouldnot useappendor reverse.
For example, (prepend’(O O ) ’( ))⇒ ’( O O ).

(d) Here’s the big one: (gen-nbrs cfig) consumes apzl-configand produces a (listof pzl-
config), the list of neighbours ofcfig. For example, (gen-nbrs’( O O )) produces
’((O ) ( O)).
Use the functions defined previously, plus abstract list functions and appropriate anony-
mous functions to implement the strategy outlined above.

(e) Finally, reworkfind-routeinto solve-puzzleusing your newgen-nbrsfunction.
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4. 2% Bonus: In the filedecline.ss, write the functiondeclinewhich should find the longest de-
clining sequence in a given list of integers. That is, efficiently find the longest continuous subse-
quence in which each element but the last is one larger than the element immediately following
it.

For example: (decline’(3 2 1))⇒ ’(3 2 1), (decline’(1 3 2 1 3 4 5 4 3 2))⇒ ’(5 4 3 2) and
(decline’(1 2 5))⇒ ’(1)

5. 5% Bonus: One-dimensional peg solitaire is okay, but the puzzle is much more interesting in
two dimensions. In a separate file called2dpuzzle.ss , modify your code from question 3 to
handle two-dimensional peg solitaire.

We will represent a two-dimensional puzzle configurations by a list of lists of symbols, where
each list of symbols has the same length, similar to matrices from Assignment 9. Besides the
symbols ’O and ’ as before, we also allow the symbol ’X to indicate an unused portion of the
board (that is, positions which contain neither a peg nor a space.

For example, the following represents the “plus” configuration on the popular cross-shaped
solitaire board:

(define plus ’((X X _ _ _ X X)
(X X _ O _ X X)
(_ _ _ O _ _ _)
(_ O O O O O _)
(_ _ _ O _ _ _)
(X X _ O _ X X)
(X X _ _ _ X X)))

The rules for moves are the same as in one-dimensional solitaire, except that they may be applied
to any row or column (note that diagonal jumps are not allowed).

To change yoursolve-puzzlefunction to work with two-dimensional peg solitaire, the only
change really required is in thegen-neighboursfunction. The solution will be especially sim-
ple if you make use of thegen-neighboursyou already wrote for question 2, and thetranspose
function from Assignment 9.

The remaining material in this document deals with enhancements that do not need to be submitted.

Many “natural” problems can be solved by finding a path through some sort of implicit graph,
and for this reason graph search techniques form the basis for many artificial intelligence (or “AI”)
algorithms.

In this assignment, we have examined one such problem, that of a simple peg solitaire game. Other
one-player puzzles such as sudoku can be solved in a similar manner. Graph search can even be used
to make intelligent decisions in two-player games such as tic-tac-toe, chess, or checkers, by examining
every possible sequence of moves.

But simple games are not the only problems which can be solved by performing a graph search.
Consider a graph where “nodes” are Scheme programs, and edges between node represent small trans-
formations from one program to another. We might use a graph search technique in such an implicit
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graph to identify cheaters on CS 135 assignments, by finding two different assignment submissions
which a short “path” connecting them in the graph.

Yet another example is automated theorem proving. Each node in the graph represents a set of
“facts” or equations known to hold, and the out-neighbours of a node are facts that can be concluded
by applying some known “rule” (e.g. an axiom, definition, or theorem) to the set of facts in the
originating node. In fact, automated theorem proving has been successfully applied to generate many
non-trivial mathematical proofs, and similar techniques are sometimes even used to “prove” that a
computer program is correct (of course, this begs the question of proving that the prover is correct, but
we will ignore this issue for now).

Although we know our graph-search algorithm will work in theory for all these problems, in prac-
tice it will not be very useful for any but the simplest questions (those which we could probably solve
without the use of a computer anyway). Luckily, there are a number of improvements to the graph
search algorithm that makes tackling more complex problems possible. Let’s examine a few of these,
back in the familiar context of peg solitaire.

The page athttp://www.mazeworks.com/peggy/index.htm gives a number of initial
board configurations of the standard cross-shaped board and defines a “perfect game” as a series of
moves ending with a single peg in the center hole. Yoursolve-puzzlefunction from question 5 should
be able to solve the smallest configuration, “cross” and possibly “plus” as well. You could probably
also solve these manually if you wanted to. But if you try to tackle a more difficult one, such as
“fireplace” or “arrow”, your program will probably take a very long time to run. Try implementing
the following improvements:

• Breadth-first search. The type of search performed by the graph search algorithm discussed
in class is called “depth-first” because we follow any branch of the graph all the way until
it terminates before trying any other branch. This is very wasteful because we will end up
revisiting each intermediate configuration many times on different branches.

The breadth-first search approach is to examine all nodes at depth 1, and then all nodes at depth
2, etc. For our problem, the nodes at depth 1 are all the neighbours of the starting configuration,
and then those at depth two are all the neighbours of any node at depth 1, and so forth. By
removing duplicate configurations at every step, we avoid revisiting nodes. However, this does
use more memory than depth-first recursion, so try to use accumulative recursion wherever
possible unless your computer has a terabyte of RAM.

• SymmetriesThe ending configuration of a single peg in the center of the cross-shaped board
has many lines of symmetry through it (specifically, four of them). When two intermediate
configurations are symmetrical to each other, there is no need to examine both of them because
they are equivalent if we just flipped the board around. So the removal of duplicates at each step
can be extended to remove all symmetrical configurations at each step of the algorithm.

• Bi-directional search We have been examining the peg solitaire game in the “forward” direc-
tion, where each move reduces the number of pegs by one. But we might also approach the
game from the “reverse direction”, where the rules are applied in reverse so that each move in-
creases the number of pegs by one. We could then search from the desired ending configuration
to the desired starting configuration, instead of the other way around. This might give some
improvement, but probably not much.
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To get an improvement, perform a simultaneous search in both directions, until at the same step
both searches have a number of possible intermediate configurations with the same number of
pegs. Then simply find a common intermediate configuration from the backward and forward
searches, and the problem is solved.

Many more enhancements can of course be utilized to gain even more efficient graph-search algo-
rithms, to solve more and more interesting problems, and this is the subject of further study into AI if
you are interested.
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