
Stellar Modelling

Andy Chmilenko
(Dated: Friday April 17, 2015)

I. CODE DISCUSSION & ALGORITHMS

In this section I will discuss some of the algorithmic choices made for our stellar modelling solution as well as talk
about some caveats associated with these decisions as well as their possible solutions. This project is done according
to the Project Outline[1] and solves the equations outlined therein.

All code is available at (https://github.com/Lanowen/StellarModelling).

Preface

When choosing which language to write the code in, we first began using Python since most of the people in the
group were comfortable with it. However it quickly became apparent how slow Python was at parsing and executing
the code-base we produced, so we decided to transfer the code-base to C++ to give us the added performance we
needed. Using C++, the speed of our code increased several fold, allowing us to produce solutions at very high fidelity
in a fraction of the time the Python code took to find a solution.

Numerical Integration

A. Theory

For our integration method we decided to use an adaptive step numerical integration method, the Runge-Kutta-
Fehlberg[2] method. This method is allows for easy calculation of a 4th-order and 5th-order accurate methods with
only one calculation of k-values (the increments), this this method is usually referred to the RKF45 method for brevity.

Using its Butcher tableau, as seen in Table I, once k1−k6 have been calculated, getting the 4th-order and 5th-order
step solutions is trivially done by multiplying the k-values by the specified coefficients.

k1 k2 k3 k4 k5 k6
0

1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
O(h5) 16/135 0 6656/12825 28561/56430 −9/50 2/55
O(h4) 25/216 0 1408/2565 2197/4104 −1/5 0

TABLE I: RKF45 Butcher tableau

FIG. 1: RK4 step visualization[3]

With this we can find the error associated with the current step-size (h) then adjust the step-size accordingly to
achieve the desired precision for the integration step. This gives a huge advantage in calculation time for stellar
solutions to reduce the number of integration steps needed drastically while still achieving a satisfactory amount of
precision. The step-size can be made more coarse for parts of the integration with small slopes and smaller error, and
more fine for parts of integration that change drastically.

The first k value represents a normal Euler integration step as seen in Fig.1 (where R-values are the k-values
mentioned in code and theory), while the others are corrections based on y coordinates calculated from each previous
k step. When they are all combined they give a well approximated solution from the DE.

https://github.com/Lanowen/StellarModelling

2

B. Coupled Differential Equations and the RK4 class

inline bool RK4::updateK() {
switch (currK) {
case 1: updatingK = true; intermed_y = y; k1 = f(t, y)*step; break;
case 2: intermed_y = y + k1 / 4.0; break;
case 3: k2 = f(t + step / 4.0, intermed_y)*step; break;
case 4: intermed_y = y + k1 * 3.0 / 32.0 + k2 * 9.0 / 32.0; break;
case 5: k3 = f(t + step * 3.0 / 8.0, intermed_y) * step; break;
case 6: intermed_y = y + k1*1932.0/2197.0 − k2*7200.0/2197.0 + k3*7296.0/2197.0; break;
case 7: k4 = f(t + step*12.0/13.0, intermed_y)*step; break;
case 8: intermed_y = y + k1*439.0 / 216.0 − k2*8.0 + k3*3680.0 / 513.0 − k4*845.0 / 4104.0; break;
case 9: k5 = f(t + step, intermed_y)*step; break;
case 10: intermed_y = y − k1*8.0 / 27.0 + k2*2.0 − k3*3544.0 / 2565.0 + k4*1859.0 / 4104.0 − k5*11.0 / 40.0; break;
case 11: k6 = f(t + step / 2.0, intermed_y)*step;break;
default: updatingK = false; currK = 1; return false;
}
currK++;
return true;

}

inline void RK4::iterate() {
y += k1*25.0 / 216.0 + k3*1408.0 / 2565.0 + k4*2197.0 / 4104.0 − k5 / 5.0;
t += step;

}

inline long double RK4::get() {
if (updatingK)

return intermed_y;

return y;
}

inline void Star::step() {
//calculate k values before iteration
do {

temperature.solver.updateK();
density.solver.updateK();
luminosity.solver.updateK();
mass.solver.updateK();

} while (tau.solver.updateK());

//iterate rk4
temperature.iterate();
density.iterate();
luminosity.iterate();
mass.iterate();
tau.iterate();

}

Using classes makes life easier, less code to write, generally faster compile times, and easier debugging. However
when working with coupled DE’s there are some design choices that need to be made properly to do the integration
properly. All the k-values need to be calculated in step with each other, which can be done with this style of loop in
Star::step(), and the structure of RK4::updateK(). The first loop will update k1 for all the DE’s, and the second loop will
update the intermediate y-values, subsequent pairs of loops will update the next k and intermediate y values, until it
gets to the 12th and last loop in which all the functions will return false, and it will move on to the step of iterating
the primary y value using all k-values with the proper coefficients from Table I.

Caveats

1. Intermediate y-values

It is important to note, you need return the intermediate y-values while the k-values are being calculated instead
of the current y-values (the y-value before the RK4::iterate() step) which represent that quantity (Mass, Luminosity,
etc...), otherwise you lose the accuracy built into the RK4 and end up with a fancy Euler’s method. Fig.1 illustrates
the purpose of this, but it is not immediately obvious that you also need to do this between coupled DE’s.

3

C. The Adaptive Step

vector<double long> relErrors;

while (true) {
relErrors.clear();
push();
step();

relErrors.push_back(temperature.solver.getRelError());
relErrors.push_back(density.solver.getRelError());
relErrors.push_back(luminosity.solver.getRelError());
relErrors.push_back(mass.solver.getRelError());
//relErrors.push_back(tau.solver.getRelError());

long double err_bound = err_sensitivity;
long double relerr = LDBL_EPSILON;

for (int i = 0; i < relErrors.size(); i++) {
if (!isnan(relErrors[i]) && relErrors[i] > relerr) {

relerr = relErrors[i];
}

}

long double lastStep = RK4::step;
RK4::step = max(step_min, min(RK4::step*pow(err_bound / 2.0 / relerr, 0.25), step_max));

if (relerr > err_bound && RK4::step != lastStep && RK4::step != step_min) {
pop();
continue;

}
}

pushValues();

After taking a step and before saving your values, you need to collect whatever function errors you want to have
your desired error accuracy with and adjust your step accordingly. We took looked for the largest error out of the set
of functions we were looking at, in this case we wanted accuracy in our Temperature, Density, Luminosity, and Mass
calculations, and using this error and our error bound adjust the step-size. You would make the step-size smaller
if your relative error is larger than your desired error bound, giving more accurate steps, or you would make your
step-size larger if your relative error was less than your error bound, giving less required steps to find a solution.

One thing to note is if your relative error is above your error bound, you should return your values to what they
were before the initial step and recalculate your step with the new, smaller step-size. You should do this until your
step-size hits a minimum that you’ve specified, or until your relative error is within acceptable limits.

Caveats

1. Error

I think it makes more sense to talk about relative error in a function rather than just the truncation error

inline long double getError() {
return abs((k1*16.0/135.0 + k3*6656.0/12825.0 + k4*28561.0/56430.0 − k5*9.0/50.0 + k6*2.0/55.0) − (k1*25.0 / ←↩

216.0 + k3*1408.0 / 2565.0 + k4*2197.0 / 4104.0 − k5 / 5.0));
}

inline long double getRelError() {
long double yi = k1*25.0 / 216.0 + k3*1408.0 / 2565.0 + k4*2197.0 / 4104.0 − k5 / 5.0;
long double zi = k1*16.0 / 135.0 + k3*6656.0 / 12825.0 + k4*28561.0 / 56430.0 − k5*9.0 / 50.0 + k6*2.0 / 55.0;

return abs((zi − yi) / yi);
}

Especially when you are dealing with function such as Luminosity which typically has values of > 1026, it will grow
much faster than the other functions initially, giving you truncation errors of > 1 between 4th-order and 5th-order
solutions, when its relative error could be < 0.001%.

4

2. Bounded Step-Size

Some problems we ran into with the adaptive step size is sometimes the step-size would be made so big, that the
next iteration step could produce some really strange and unwanted results. For example the step could be so big it
may return INF values, or produce NaN errors. One thing to remember is that variables are in fixed parts of the memory
and using a step-size that is too big can produce buffer overflow errors, so it is a good idea to bound your step-size.

Similarly, you may run into an unattainable error accuracy, which can make your step-size so small it could become
truncated to 0, or you solution would iterate endlessly until you run out of available memory. So having a minimum
step-size is also a good idea.

Finding Solutions

We parametrized the solutions we were looking for in terms of variable ρc and a fixed Tc and by varying ρc we
were able to find a solution where the structure of the star converges. By comparing the calculated Luminosity from
the Stefan-Boltzmann Law (Eq.4) using the solved Tsurf of the star as seen in Eq.1, with the integrated solution for
Luminosity we knew how we needed to vary ρc in order to converge.

f(ρc) =
L∗ − 4πσR2

∗T
4
∗√

4πσR2
∗T

4
∗L∗

(1)

FIG. 2: Solution for star with Tc = 1.8 × 107K. ρc,test is
larger than ρc,sol, we are above target solution. Temperature
rapidly converges. Convection zones shown in grey.

FIG. 3: Solution for star with Tc = 1.8 × 107K. ρc,test is
smaller than ρc,sol, we are below target solution. Temperature
doesn’t converge. Convection zones shown in grey.

FIG. 4: Solution for star with Tc = 1.8 × 107K. Solution
converged on proper ρc. Convection zones shown in grey.

When looking for a solution we will have two solutions,
one that is a ρc above our solution (Fig.2), and one that
is ρc below our solution (Fig.3). When we have a so-
lution like in Fig.2, the Temperature converges rapidly
giving a lower Tsurf and a radius R∗ smaller than the
radius would be for the proper solution (Fig.4), we get a
solution for the Stefan-Boltzmann Law that has a lumi-
nosity far less than the integrated luminosity L∗ giving
a positive fractional difference for Eq.1. When we have a
solution like in Fig.3, the temperature doesn’t converge,
leading to a high temperature for Tsurf . In this case we
get a solution for the Stefan-Boltzmann Law that has a
luminosity far higher than the integrated luminosity L∗
giving a negative fractional difference for Eq.1.

Using this information we can use the Shooting
Method to find a set of bounds to be able to do our
Bisection Method to zero in on the proper ρc solution
quickly and efficiently.

5

D. Shooting method

Not knowing where the solution for ρc for any particular Tc condition can make finding the solution difficult, but
by using the Shooting Method we can coarse adjust our ρc,test by some large amount. If we are above the solution
we adjust our new ρc,test down, and vice-versa if we are below the solution.

double frac = star−>frac_diff();

if (frac > 0 && !isinf(frac)) { //positive, go lower
R_lim = star−>R_star / Rsun;
if (frac_test == 1 && !isnan(frac) && !isinf(frac)) {

bisect = true;
cout << endl << endl << "===Beginning bisection===" << endl;
break;

}
else {

if (!isnan(frac) && !isinf(frac))
frac_test = 2;

rho_c_1 = rho_c;
if (rho_c − shoot_delta_density < 0)

rho_c /= 2;
else

rho_c −= shoot_delta_density;
}

}
else{ //negative, go higher

if (frac_test == 2 && !isnan(frac) && !isinf(frac)) {
bisect = true;
cout << endl << endl << "===Beginning bisection===" << endl;
break;

}
else {

if (!isnan(frac) && !isinf(frac))
frac_test = 1;

rho_c_1 = rho_c;
rho_c += shoot_delta_density;

}
}

As we can see, after we solve a star, we can calculated the fractional difference (Eq.1) and we can keep track of
where are are relative to the solution. If we are above the solution and the next ”shot” we are below the solution, we
know we passed over the solution and we can begin bisection between our two last ρc,test’s. Like-wise we can do the
same if we go from below the solution to above it. Some speed enhancements we can do, is with the introduction of
a limiting radius, R_lim.

E. Integration Stopping Conditions

We implemented three checks to stop the integration process when solving a star.

while (kappa.get()*pow(density.get(), 2) / abs(density.dRho_dr(density.arr[0].back(), density.get())) > LDBL_EPSILON &&←↩
temperature.arr[0].back() < int_R_stop*Rsun && mass.get() < 1E3*Msun) {

this−>iterate();
}

Where *.arr[0].back() is the last integrated radius value in metres.

The first way, is by using an opacity proxy, defined by Eq.2.

τ(∞)− τ ≈ δτ ≡ κρ2

| dρ/dr |
(2)

We know that the structure has converged (or is nearly converged) to some solution when the δτ ≪ 1. This is a
convenient and is easily calculated.

Other way is a simple Mass limit, for our solutions to be physical solution of the main sequence the mass should
be limited by a reasonable amount M < 103M⊙. In practice this rarely, if ever, is the terminating condition of the
integration (with regular values).

The third way we’ve implemented the stopping condition is with a limiting radius. Generally for MS stars, they
have a maximum radius of ≈ 10R⊙. To begin with, we can set R_lim to be about 10. This becomes helpful for
solutions in the regime below the proper solution. δτ will stay large, and this radius limit becomes the primary

6

stopping condition. If we are in the regime above the proper solution, the structure converges to a radius that is
smaller than the proper radius, but we can infer that the proper radius is close to the calculated R∗, we can set
R_lim = star−>R_star / Rsun as seen in the Shooting Method code. However to make sure you don’t stop your integration
prematurely, we implemented R_lim of the star to be set to R_lim_star = 1.2L*R_lim + 1.0L when defining the new star to
test. Heuristically this worked well and improved our calculation times immensely.

F. Bisection Method

if (frac > 0) { //positive, go lower
down:

lastDir = 2;
R_lim = R_lim;
cout << endl << endl << "Bisecting down." << endl;
rho_c_1 = min(rho_c_1, rho_c_2);
rho_c_2 = rho_c;

}
else{ //negative, go higher
up:

lastDir = 1;
cout << endl << endl << "Bisecting up." << endl;
rho_c_1 = max(rho_c_1, rho_c_2);
rho_c_2 = rho_c;

}

The Bisection Method is remarkably similar to the shooting method, except it deals with the average between two
ρc, and therefore converges closer to the proper solution exponentially. Every step the ρc,ave is tested, rho_c = (←↩

rho_c_1 + rho_c_2)/ 2.0;. Then the fractional difference is compared, if ρc,ave is above the solution, the bounds become
ρc,ave and the minimum of the current bounding ρc, and vise-versa it if it below the solution, the bounds become
ρc,ave and the maximum of the current bounding ρc as seen in the code. Again, we can continue setting R_lim as we
get closer to the solution for faster results.

Caveats

1. Floating Point Precision

One thing you need to be constantly aware of is the precision of data types in programming. The data occupies
a finite spot in memory and thus has a limited precision. long double typically has an accuracy on the order of
10−16 (LDBL_EPSILON ≈ 2.2045e−016), and star solutions become increasingly more sensitive w.r.t. the initial conditions.
Assuming your initial ρc bounds are within 100, you will hit the precision limit after 56 bisections (100/256 =
6.94 × 10−16). The higher Tc you try to test, the further off your solutions will be (generally). We also ran into the
problem where the bisections gets stuck in a regime below the proper solution, as in Fig.5, temperature will never
converge, so after 56 bisections you may not actually end up with the best solution, so it is good to keep track of the
best solution as you bisect, then output the quantities you want from Star last_pos_frac; as it is your best solution.

if (last_pos_frac == 0 || abs(last_pos_frac−>frac_diff()←↩
) > abs(frac)) {

if (last_pos_frac != 0)
delete last_pos_frac;

last_pos_frac = star;
star = 0;

}

FIG. 5: Solution that is ρc < 10−12kg/m2 below the proper
ρc, where Temperature doesn’t converge. Convection zones
shown in grey.

7

G. τ & Finding Surface Solutions

long double Tau_inf = this−>tau.arr[1].back();
for (int i = this−>tau.arr[1].size() − 1; i >= 0; i−−) {

if (Tau_inf − this−>tau.arr[1][i] > 2.0 / 3.0) {
T_star = this−>temperature.arr[1][i + 1];
R_star = this−>temperature.arr[0][i + 1];
break;

}
}

τ(∞)− τ(R∗) =
2

3
(3)

L(R∗) = 4πσR2
∗T

4
∗ (4)

The surface boundary conditions are satisfied by Eq.3 and Eq.4, and it is pretty trivial to find it with a simple
loop. Similarly using Eq.4 with integrated values for L∗ and R∗, a solution can be found for T∗. Looking at the MS
plot in Fig.11, both values for T∗ are plotted against each other, the values for Tτ and TSB agree quite well for lower
temperature stars, then starts to deviate around 5000 K. However, there is one outlier around 28000 K where they
both agree. That is why earlier, I said it is generally not possible to converge to a solution at higher temperatures
with the precision in long double, but it so happens that we were lucky for this one case. Otherwise, the structure of
the star converges, and R∗ and L∗ can be used to find the Tsurf with the Stefan-Boltzmann Law and it correlates
well to expected MS values.

H. κ & Opal Tables

Opal tables are a good way to calculate opacities for your stars, they are computed with many different sets of
equations to take into account electromagnetic and quantum effects that give more fidelity than our approximate
functions do.

FIG. 6: Solution for star with Tc = 1.8× 107K using Opacity generated from Opal Tables.

The solution using Opal Tables converges for a ρc a bit smaller (Fig.6) than when using the fitted κ functions
(Fig.4). You can see the variations that appear in κ from the Opal Tables comparing Fig.7 and Fig.9, as well as the
variations in lnP/d lnT comparing Fig.8 and Fig.10.

8

FIG. 7: Solution for star with Tc = 1.8 × 107K. κ vs R/R∗
showing κopal as well as the fitted κ function

FIG. 8: Solution for star with Tc = 1.8× 107K. d lnP/d lnT
variations from Opal Table values.

FIG. 9: Solution for star with Tc = 1.8 × 107K. κ vs R/R∗
the fitted κ function

FIG. 10: Solution for star with Tc = 1.8 × 107K. Smooth
d lnP/d lnT from fitted κ function.

A simple and naïve approach to implementing the Opal Tables is using linear interpolation. The tables are organized
with respect to two variables, with rows of constant logT and columns of constant logR, where R ≡ density[g/cm3]/T 3

6

and T6 ≡ T/106. Using this you can find a space in the table in-between two columns and in-between two rows. First
you start of by finding the fractional difference between your values of logT and logR, and their respective neighbours.

← fR −→
logR1 ← logRcalc −→ logR2 · · ·

logT1 table[x][y] ← r1 −→ table[x][y+1] · · ·
↑ ↑ ↑
fT logTcalc κopal

↓ ↓ ↓
logT2 table[x+1][y] ← r2 −→ table[x+1][y+1] · · ·

...
...

...
. . .

TABLE II: Opal Table Linear Interpolation Visualization

9

fT = (T − table[x][0]) / (table[x + 1][0] − table[x][0]);
fR = (R − table[0][y]) / (table[0][y + 1] − table[0][y]);

r1 = table[x][y] + fR*(table[x][y + 1] − table[x][y]);
r2 = table[x + 1][y] + fR*(table[x + 1][y + 1] − table[x + 1][y]);

return pow(10.0, (r1 + fT*(r2 − r1)))/10.0; //divide by 10 to convert from cm^2/g to m^2/kg

Where x is the index of the column containing the greatest value of logT such that logTcalc > logTtable, and
similarly y is the index of the row containing the greatest value of logR such that logRcalc > logRtable and table is a
array of rows, or in different words a matrix of [rows][colums]. Once you find the fractional differences fT and fR, you
can use fR to calculate the two ’in-between’ values r1 and r2 as shown in Table.II. Then the desired kopal is one last
linear interpolation between r1 and r2 using the fractional separation fT.

Caveats

1. Better Interpolation Methods

The Opal Opacity group has code written in Fortran which uses cubic spline interpolation and smoothing functions
when looking up values in tables. As said before, the linear interpolation is a good start however cubic spline
interpolation would be better, albeit harder to implement.

2. Edge-Cases and Extrapolation

You can run into problems when you are at the edge of the opal table, such that table[x+1] or table[x][y+1] will
give you a sub-script out of range error. Similarly, the table isn’t perfectly square, the bottom right corner has some
empty values which would give you problems as well.

if ((x < table.size() − 1 && y > table[x + 1].size() − 1) || x == table.size() − 1) {
fR = (R − table[0][y]) / (table[0][y + 1] − table[0][y]);
fT = (T − table[x][0]) / (table[x − 1][0] − table[x][0]);

}
else if (y == table[x].size() − 1) {

fR = (R − table[0][y]) / (table[0][y − 1] − table[0][y]);
fT = (T − table[x][0]) / (table[x + 1][0] − table[x][0]);

}
else {

fT = (T − table[x][0]) / (table[x + 1][0] − table[x][0]);
fR = (R − table[0][y]) / (table[0][y + 1] − table[0][y]);

}

if (y == table[x].size() − 2 && y == table[x + 1].size() − 1) {
r1 = table[x][y] + fR*(table[x][y + 1] − table[x][y]);
r2 = table[x + 1][y] + fR*(table[x + 1][y] − table[x + 1][y−1]);

}
else {

r1 = table[x][y] + fR*(table[x][y + 1] − table[x][y]);
r2 = table[x + 1][y] + fR*(table[x + 1][y + 1] − table[x + 1][y]);

}

return pow(10.0, (r1 + fT*(r2 − r1)))/10.0; //divide by 10 to convert from cm^2/g to m^2/kg

This code handles some of the edge cases, and allows for some rudimentary extrapolation (linear). This is far from
ideal, perhaps something is wrong with either the extrapolation code (most likely), or with the star solutions that are
driving the Opal values out of range of the pre-generated values. In either case, using the fitted κ functions proved
to be more robust and less prone to error.

II. THE MAIN SEQUENCE

Some notes on the main sequence graph Fig.11, as mentioned in G, about finding surface solutions, the boundary
conditions become increasingly more sensitive as the temperature increases; long double doesn’t have enough precision
to resolve solutions. Tsurf solutions can be solved using either Eq.3, or Eq.4, the Tτ solutions line up with the TSB

solutions at lower temperatures almost perfectly, then start to deviate around 5000 K surface temperatures. However,
it is interesting to note the one outlier at about 28,000 K, where the Tτ solution line up with the TSB solution again,
this is probably just a stroke of luck where ρc parameter was well approximated in the 10−16 precision of long double.

10

Plotted also is the Mass-Luminosity (Fig.12) and Mass-Radius (Fig.13) relationships along with the relationships
from the text[4]. The calculated values are in good agreement with the fitted relationships from the text, with some
slight deviation at the lower mass stars for the Mass-Radius relationship (Fig.13).

FIG. 11: Main Sequence Plots containing surface temperatures: Tτ calculated from τ , as well as TSB calculated from the
Stefan-Boltzmann Law (Eq.4).

FIG. 12: Mass-Luminosity relationships from text[4] plotted
against MS solutions.

FIG. 13: Mass-Radius relationships from text[4] plotted
against MS solutions.

11

III. A CLOSER LOOK AT TWO STARS

FIG. 14: Star with Tc of 9.0×106 K. ρ, T,M,L plotted as a function of R/R⊙. Convection zones shown in grey.

FIG. 15: Star with Tc of 2.5×107 K. ρ, T,M,L plotted as a function of R/R⊙. Convection zones shown in grey.

12

FIG. 16: Star with Tc of 9.0×106 K. κ plotted as a function of R/R⊙. Convection zones shown in grey.

FIG. 17: Star with Tc of 2.5×107 K. κ plotted as a function of R/R⊙. Convection zones shown in grey.

13

FIG. 18: Star with Tc of 9.0×106 K. Pressure of various sources plotted as a function of R/R⊙. Convection zones shown in
grey.

FIG. 19: Star with Tc of 2.5×107 K. Pressure of various sources plotted as a function of R/R⊙. Convection zones shown in
grey.

14

FIG. 20: Star with Tc of 9.0×106 K. dL/dr of various sources plotted as a function of R/R⊙. Convection zones shown in grey.

FIG. 21: Star with Tc of 2.5×107 K. dL/dr of various sources plotted as a function of R/R⊙. Convection zones shown in grey.

15

FIG. 22: Star with Tc of 9.0×106 K. dlnP/dlnT plotted as a function of R/R⊙. Convection zones shown in grey.

FIG. 23: Star with Tc of 2.5×107 K. dlnP/dlnT plotted as a function of R/R⊙. Convection zones shown in grey.

The convection zones in the above stars are labelled in blue/grey. In the low mass star (with Tc of 9.0×106 K) and
higher mass star (with Tc of 2.5×107 K), there is convective region envelope at the surface of the star. The pressure
gradient is low in this region and the temperature gradient is high in this region. The radiative temperature gradient

16

is high due to a large increase in opacity near the surface of the star, because of the lower temperatures the H−
contribution to opacity drives up, as seen in Fig.16 and Fig.17.

The larger mass star has a convective core where the smaller star does not. The larger star has a convective core
because the core temperature, Tc is sufficiently high such that the CNO cycle begins to dominate in energy production
as seen inFig.21, while the smaller star is dominated by the PP-chain since its Tc isn’t high enough to start CNO
burning. This CNO burning creates high temperatures in the core that falls off rapidly, creating a high temperature
gradient that causes convection in the core.

As mentioned, the core temperature of the smaller star is not hot enough to start CNO burning (Fig.20), so it is
dominated by the PP-chain, while the larger star has begun CNO burning (Fig.21). The larger star is dominated by
CNO burning but the PP-chain is still active in the star, but to a much lesser extent. Both stars however, do not
have sufficient core temperatures to because the 3α-process, this only becomes relevant at temperatures at 1×108 K.

In the core of the larger star, Thomson electron-scattering is the dominant source of opacity, this is again because of
the higher core temperature where free-free absorption increases with temperature. At high temperatures the free-free
absorption affects the κff inversely with temperature, driving it down as seen in Fig.17. The temperature is not high
enough in the core of the low mass star so κff dominates over kes for the majority of the structure of the star as seen
in Fig.16. In the latter parts of both stars, kff is the dominant source of opacity until the temperature near their
surfaces drop sufficiently for H− ions to contribute significantly; at this point near the surface the other sources of
opacity drop off, κH− dominates and falls of as the star converges at their surface.

17

IV. REFERENCES

[1] Broderick, Avery E. PHY 375 Final Project. University of Waterloo, 2015.
[2] http://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
[3] http://www.marekfiser.com/Projects/Real-time-visualization-of-3D-vector-field-with-CUDA/

4-Vector-field-integrators-for-stream-line-visualization
[4] Ryden, Barbara Sue., and B. M. Peterson. Foundations of Astrophysics. San Francisco: Addison-Wesley, 2010. 330-31. Print.

http://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
http://www.marekfiser.com/Projects/Real-time-visualization-of-3D-vector-field-with-CUDA/4-Vector-field-integrators-for-stream-line-visualization
http://www.marekfiser.com/Projects/Real-time-visualization-of-3D-vector-field-with-CUDA/4-Vector-field-integrators-for-stream-line-visualization

	Code Discussion & Algorithms
	Preface
	Numerical Integration
	Theory
	Coupled Differential Equations and the RK4 class
	Caveats
	Intermediate y-values

	The Adaptive Step
	Caveats
	Error
	Bounded Step-Size

	Finding Solutions
	Shooting method
	Integration Stopping Conditions
	Bisection Method
	Caveats
	Floating Point Precision

	 & Finding Surface Solutions
	 & Opal Tables
	Caveats
	Better Interpolation Methods
	Edge-Cases and Extrapolation

	The Main Sequence
	A Closer Look at Two Stars
	References
	References

