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EXPERIMENT 3

GAMMA RAY DETECTION WITH SCINTILLATION DETECTORS

PURPQOSE
1. To demonstrate the use of a sodium iodide scintillation level sequence and therefore the gamma ray energy spectrum
___detector and its response to gamma rays. for every nucleus is unigue and can be used to identify the
2. To show the absorption of gamma rays in matter. nucleus. The energy levels and decay processes of °- Na,
¢9Co, and "*"Cs are given in Figure 3.1. The term beta decay
EQUIPMENT REQUIRED means either (- (electron) emission, 3+ (positron) emissian,
Model 8023 Nal (T}) Scintillation Detector or electron capture by the nucleus.
Model 802—5 Tube Base
Model 805 Preamplifier The thallium-activated sodium iodide detector, or Nal(Tl}
Model 2012 Amplifier detector, responds to the gamma ray by producing a small
Model 2000 Bin and Power Supply flash of light, a scintillation. The scintillation occurs when
Model 3102 High Voltage Supply electrons, and in some cases positrons, are given energy by the
OMEGA~—1 Multichannel Analyzer incident gamma ray and are stopped by the crystal. The
Oscilloscope crystal is mounted on a photomuitiplier tube that converts
Model A501 Absorber Set the scintillation to an electrical pulse. The first pulse from the
Model 7443 Gamma Reference Source Set photocathade is very small and is amplified in 10 stages n a
Model 7445 Coincidence Source Set series of dynodes to get a large enough pulse. This i1s taken
Model C177—-3 Coaxial Cable Set from the anode of the photomultiplier, and is a negative pulse,
ADDITIONAL EQUIPMENT FOR PARTD The Nal crystal is protected from collecting moisture in the
Model 1772 Counter/Timer air by encasing it in aluminum, which also serves as a conven-
ient mounting for the entire crystal photomuitiplier umt.
There are three dominant gamma ray interactions with matter:
A. RADIOACTIVE SOURCES AND SCINTILLATION 1. The photoelectric effect
DETECTORS 2. The Compton effect
Radioactive nuclei decay by emitting beta or alpha particles. 3. Pair production

Often the decay is to an excited state of the daughter nucleus,
which usually decays by emission of a gamma ray. The energy
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Figure 3.1 Decay Schemes.



Only the photoelectric effect produces an output pulse that is
proportional to the gamma ray energy. In the photoelectric
effect, all of the energy of the gamma ray is absorbed by an
electron. In the Compton effect, the gamma ray scatters from
an electron, giving the electron an amount of energy that
depends upon the angle of scatter:

E

!
..E - =
1+ _c’ {1 - cos @)

where E' is the scattered gamma ray energy, E the incident
gamma ray energy, and @ is the angle of scatter. The term
me? is the rest mass energy of the electron, equal to
0.511 MeV. The energy given the electron is just

Ee=E-E

If the gamma ray escapes from the crystal, then the only
energy deposited is the electron energy, and the output pulse
is much less than that for the full energy. The spectrum is
complicated by having many pulses not of the full gamma
ray energy, as will be seen below.

If the gamma ray does not escape from the crystal, but either
scatters again or gives up its remaining energy by the photo-
electric process, then the full energy pulse is obtained. Since
this is more likely in a larger crystal, the full energy efficiency
increases by more than the increase in volume.

802-3 802-5
Detector Base |

3102
High
Voltage

Pair production occurs when the gamma ray energy is greater
than 1.022 MeV, but is not an important part of detection
until energies of 2.5 MeV or higher. The positron and electron
of the pair produced slow down and scintillate, just as for
Compton scattered electrons. When the positron comes to
rest it annihilates with an electron, producing two 0.511 MeV
gamma rays. Both of these must be absorbed to get the fuli
energy peaks. Pair production will be discussed further in

Experiment 4.

The maximum energy given to an electron in Compton scatter-
ing occurs for gamma ray scattering of 180°, and the energy
distribution is continuous up to that point. This energy,
known as the Compton edge, can be calculated from the
incident gamma ray energy.

B. GAMMA RAY SPECTRUM

1. Connect the apparatus as in Figure 3.2. Place the
1370 source near the Nal detector and set the HV supply
at +1000 volts. Set the amplifier gain and polarity so that
the peak appears a little below the middie of the display.
Coliect the data long enough so that the spectrum appears
to vary smoothly from one point to the next. it should
appear as in Figure 3.3A. Identify the photopeak. The
mass of data to the left of the photopeak is the Compton
distribution, which has a maximum value at the Compton
Edge. This is the response to 3 monoenergetic gamma ray
of roughly medium energy. A very strong peak at low
energy may be present if the discriminator is set low
enough. This is the Ba x-ray at 37 keV, which follows
internal conversion.

2. Read out the spectrum and make a graph of it.

ADC OMEGA-1

re. MCA L Readout

Figure 3.2 Electronics Setup.
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Figure 3.3 Gamma Ray Spectra.

3. Now place the ¥ Na source near the detector instead of

the '37Cs source. Clear the memory and collect a
spectrum. From the decay scheme (Figure 3.1) one could
expect a similar spectrum to '37Cs, but there are now two

peaks. The higher one at 1.27 MeV is the gamma ray C.
expected, while the lower one is at 0.511 MeV and is the
radiation from positron annihilation. This "“511"
radiation will always be present when positrons are
emitted by nuclei. Read out the spectrum and plot a

graph of it. It should appear as in Figure 3.3B.

4. Place a large piece of lead (such as a lead brick) next to
the source and take a fresh spectrum. There will be
adehitional counts in the Compton regumn of the spectrum

due to scattering from the lead. Any material near the
source will cause scattering of gamma rays, so this effect
cannot be entirely eliminated.

ENERGY CALIBRATION AND RESOLUTION

1. From the graphs of the '*’Cs and *Na spectra deter-
mine the central channel of each photopeak and plot the
gamma ray energy of the peak vs. the corresponding
channel. (Alternatively, move the cursors to the peak
channel and read the cursor channel from the display.)
Estimate the position to the nearest channel, and estimate
the uncertainty in determining the peak position. Plot the
uncertainty in position as error flags, as in Figure 3.4.
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where the FWHM and peak positions are given in channels.
The performance of a scintillation counter is usually specified
in terms of its resolution for the .662 MeV peak of '37Cs since

15 L 1.274 the resolution depends upon gamma ray energy.
Ey (MeV)
3. Calculate the resolution for each of the three photo- .
L peaks in '37Cs and ¥ Na. This will be about 8 to 9% for a
TO - crystal-phototube combination that is working properly.
If it is higher, there may have been some damage to the
unit, resulting in poor optical coupling, or the high voltage
05 is too low (it should be about +1000 volts), or the count-

ing rate is too high.

4. Calculate the energy of the Compton Edge for the
137Cs and ®Na gamma rays and compare to the value

! 1 L obtained from the spectrum.
50 100 150
D. GAMMA RAY ABSORPTION IN MATTER
CHANNEL NUMBER 1. Remove all ‘other sources and place the '*’Cs source
at about 10 cm from the Nal detector and collect a
Figure 3.4 Energy Calibration. spectrum. Move the cursors so that they appear on each

side of the photopeak, as shown in Figure 3.5. Determine
the number of counts between them by tuming
INTEGRATE ON and reading the value from the CRT.
(1f the integrate feature is not available on the MCA

A straight line through the data gives the energy ::T:e e acunIathepectiimdand , sdciueithelchisnne i3

t : photopeak.)

corresponding to each channel of the MCA. The line may not

go exactly through zero. This is due to the Nal detector not

being exactly linear at low energies, but can also

be due to variations in the adjustment of the zero setting of

the ADC. Non:-linearity may also occur if the amplifier gain is

high enough to bring pulses into saturation, but this can be - 800

checked with an oscilloscope at the amplifier output.

2. The calibration curve can now be used to determine
the energies of a different gamma ray source. Collect a
spectrum for 60 0o and determine the energies of the two
photopeaks that appear. 400

COUNTS

The uncertainty in the peak position is related to the width of
the peak. The full width of the peak at half of its maximum
value (FWHM) is used to determine the resolution by:

FWHM x 100% | | [

RESOLUTION = ——="5
i CHANNEL NUMBER

Figure 3.5 Peak Area.



Connect the Model 1772 Counter/Timer input to the
A SCA output. The SCA output from the back of the
A is now set to give pulses far just the photopeak.
unt these photopeak pulses for 100 seconds.

Place one sheet of lead between source and detector
d count the number of pulses in 100 secands. Repeat
th an additional sheet of lead each time,

Remove the 7Cs source and determine the back-
und counts in the photopeak region in 100 seconds.
btract the background from each of the data taken
ve. Calculate the error in the result from:

; 2
9TOTAL =\Fz data + 7 background

Plot the logarithm of the number of counts (and the
or flags) vs. the absorber thickness of lead. Determine
e absorption coefficient from the slope of the curve

o (%) - -

here I is the intensity for the thickness x and I, is the
tensity with no absorber. The absorption coefficient u

usually expressed in units of cm™'.

ULTICHANNEL ANALYZER DEAD TIME

ultichannel analyzer requires many microseconds longer
he input pulse width to convert the pulse to a memory
on and increment that location. During that time the
is dead and will not accept any more pulses. A meter
e front of the MCA gives a measure of the percent of
that it is dead. The internal clock used in the preset

808 AMP OMEGA-1
802-3 802-5 Preamp T MCA L 3 Readout
A sca
HIGH | y out
VOLTAGE
ouT T 1Tz
Counter/
Timer

Figure 3.6 Electronics Setup.

time is corrected for the dead time, so that the preset time
used is live time, and is always longer than clock time. Channel
zero is incremented every second of live time in order to have
a value of elapsed live time with the spectrum.

|I. Use the equipment as set up above, according to
Figure 3.2 but with a Model 1772 Counter/Timer
connected to the SCA output. Place the '*’Cs source
such that the dead time meter reads about 10 to 20%.
Set the preset time at 100 seconds on the MCA and on
the Model 1772 Counter/Timer. Start the Counter/Timer
and MCA at the same time, and collect a spectrum and
SCA output counts.

2. Record the folilowing values: Elapsed live time (channel
zero), preset time, scaler counts {(SCA output), and MCA
photopeak counts (by integrating the spectrum, or by
printing the spectrum and summing the channels).

3. Calculate the ratio of MCA photopeak counts to scaler
counts. Expressed as percent, this ratio is the live time of
the MCA, and should be about the same as the value
100% ADC dead time. The elapsed live time and preset
time should have the same value.
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room temperature. However, by cooling the germanium to liquid-nitrogen
temperatures, this problem can be alleviated. Methods have also been de-
veloped—to reduee -the- conductivity produced by impurities, thus making
feasible depletion layers of 1 em thickness.

Figure 7-19 shows, as an example, part of the gumma-ray spectrum obtained
with a germanium counter from a nitrogen target bombarded with deuicrons.
The left-hand peak results from the decay of the first excited state of N 13 pro-
duced in the N 1, pIN'® reartion. The event in the detector materiai i3 pair
production of 2 5.25-MeV gamma ray depositing .23 MeV in the material from
the stopping of the eiectron and the positron. The positron is aunihilated in
the detector but the annihilation radiation, two 0.51-MeV gamma rays, eseapes.
Events in which one or both of the annihilation quanta are absorbed give rise
1o other (sinaller) peaks in the pulse-height spectrum, corresponding to de-
posited energics of 4.74 and 5.25 MeV. The right-hand peak corresponds in
similar fashion 10 the decay of the second excited state of O3 pruduced in the
N(d, n)O'® reaction. In many of the events, of course, the electron and/or
positron may not conie to complete rest inside the material. Tlis gives rise
to a reduced voltage pulsc, contributing to the more or less econtinuous back-
ground shown in Fig. 7-19.

7-7 The Scintillation Counter

The famous incasurements by Rutherford and his associates of alpha particles
seattered froin thin metal foils were pertormed by viewirg the scintillations
caused by the alpha particles impinzing on a zine sulfide sereen. The phntons
in the visible range prodveed by the slowing-down process of the alpha particles
were directly viewed by the eye through a low-power microscope. A medarn
scintillation conuater uperates on exactly the same principle, except that the
kuman cye is cplaced by an electronic device called a photomultiplier tube.
Tigure 7-220 shows schematically the arrangement. Photons produced in the
-intillation cry tal cemented to the surface of the photomultiplier tube liberate
Aectrons fron-  1e photocathode. These electrous are accelerated over approxi-
mately 100 to -Z0 V and are electrostaticaily focused so that they impinge on
the first dynoc .. By the impact, 2 number of secondary electrons are released,
wsually of the order of 2 to 5 per primary electron. The secondary electrons
are accelerate-l aguin across the zap to the second dynode, where the mumber
is further mu.‘iplied. A photomul:iplier tube usually contains 13 to 15 dynodes,
eavh with a multiplication factor of 2 to 9, depending on the voltage between
the dynodr .. Photons striing the photocathode therefore cause an avalauche
of electro «s which eventually hits the anoce and produces a voliage pulse vver
the resis.or R. This veltage pulse is proportional 0 the energy deposited by the
primary radiation in the cry=ial, or approvimazely so. The scintiilation counter
thorefore ean be used as a spectrometer in conjunction with an eiectronic
pulse-lieight analyzer.

.
ot g o

—e & il = = . mmam  mE wom f i e e s o im s e e cemee - - .

' Fe:”c 4= i}&ecéﬁ& -[\Q/{r

L 2 TN

|




PR

910 STOPPING AND DETECTING NUCLEAR RADIATIONS

[cHAP. 7

Primary
Scintillation v-ray
crystal \

L

1
\
A

\

Ji

N.
/

/

1
Light -
shield-s
Cement

e

£
2 g e
i Semitransparent/ Vhotons

photocathode

Fuveplate

Electronsf  Grid ]
N

E Grid 2
1

Sos

To )

N

b

N

_E' < dynedes d .\k
= g
= 3\9
el M
o 11
12 265 Grid 3
——14 1 _13
1715 1-14: Dynodes
! 15: Anode
F o oy
T
R Sigral

Fig. 7-20. Large scintillation erystal (for gamma rays) and
photomultiplier tube (RCA 7046).

Table 7-3 lists the properties of several of the common phosphors used in
scintiliation counters or spectrometers. Cclumn 3 of the tabie lists the decay
constant; that is, the time it takes for the phosphor to relcase its storcd-up
energy in the form of photons. The slowest of the erystals, the cesium iodide
crystal, is still much faster than a Geiger-Mueller tube, which has a dead time
of about 10~ %sec. The importance of fast response in nuclear detectors is
discussed in Section 8-6.
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Fig. 7-21. (a) Decay scheme for Na24 and ( b) pulse-height spectrum for the gamma
rays emitted in the decay obtained with a 3-in, X 3-in. Nal scintillation crystal.
(Data from P. R. Bell in Beta- and Gammn-Ray Spectroscopy, ed. by K. Siegbahn.
Amsterdam: North-Holland Publi-hing Company, 1953.)

The scintillation spectrometer has found many applications in low-energy,

as well as iu high-cnergy,
in the area of gamma-ray
diameter, 3-in. thick) Nal

nuclear physies.

It has been particularly popular

§pectroseopy, for which usually a large (e.g., 3-in.
crystal is used. Unfortunately, even monoenergetic

Bamina ruys produce a complex pulse-

height specirum, reflecting the fact that

varying amounts of the gamma-ray energy may be deposited in the crystal.
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INSTRUMENTS AND MACHINES USED IN NUCLEAR PHYSICS [Ch.8
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_; Becauss » = ¢/A and ¥’ = ¢/ = ¢/(h + &3), we may write this aa
E
2 Compton Edge R 4 "&‘Tx i-16}
Pair Li i Bl certy o o e e by B 4
bead-on collision oocurs, the electron recoiling in the forward direstion and
thwtuedphntonmvdin.inlhchuknlddhuﬁon.hmgh.mumm
# = 180° and A\ = 2A/myc, and Equation 4-18 becomes
: ! : Brma = by (A2h0 ) [417]
0.50 1.00 150 MeV (H(%/u’)
Electron Kinetic Energy
( = Pulse Height)
Figure 8-4 Idealized pulse-height spectrum for a scintillator detecting
1.48 MeV photons.
Consider the pulse-height distribution, or spectrum, shown in Figure 8-4.
The number of detected pulses for a given pulse height is displayed as a
function of the pulse height, which is measured in volts but shown here as
kinetic energy of the electrons in MeV. The monochromatic gamma-ray
source in this case consists of radioactive 9K atoms, each one of which
emits a photon of 1.48 MeV as the unstable nucleus decays.
The peak of highest energy originates from the photoelectric effect.
Since the binding energy of atomie electrons is only a few electron volts,
small compared with the photons’ energy, and consequently the photo-
electrons have essentially the entire photon energy, the energy at the so-
called “photopeak” is almost exactly the same as the gamma-ray energy.
The second peak arises from the Compton effect. When a 1.48 MeV photon NG
collides head on with an essentially free atomie electron, the Compton i
electron recoils in the forward direction with a kinetic energy of 1.26 MeV ‘:‘?
(computed from Equation 4-17), while the scattered photon travels in the _
reverse direction with the remaining energy, 1.48 — 1.26, or 0.22, MeV. i Y
Compton collisions that are not head-on produce less energetic electrons i)
and more energetic scattered photons. Therefore, the Compton peak has a X 3
relatively sharply defined high-energy edge, in the figure corresponding to 5 R
1.26 MeV; it trails off gradually on the low-energy side because of the 2 :
Compton collisions producing electrons with less than the maximum ki- =
netic energy. The third peak in the scintillation spectrum originates from P
electron-positron pair prodiction. Since the rest energy of an electron or _,_\:;
positron is 0.51 MeV, a total of 1.02 MeV is needed to bring a pair into § 2
existence. The difference in energy, 1.48 — 1.02 = 0.46 MeV, is the sum (&
of the kinetic energies of the electron and positron (see Section 4-5); this J
total kinetic energy, after exciting scintillator electrons, produces the
pulses at the pair-production peak. !
The relative sizes of the three peaks described depend on the energy of §
the photons and the size, shape, and identity of the scintillation material. i<

Still other peaks may be found. For example, gamma rays with an energy
above the threshold energy of 1.02 MeV for pair production will produce
positrons, and if the positrons are annihilated with electrons before leaving
the scintillator, annihilation photons of 0.51 MeV are produced (Section
4-5), and these photons also can give rise to photoelectric and Compton

peaks.
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