
Assignment 4
Due March 19, 2015 at the beginning of lecture. Marked out of 30 and worth 10% of your
final mark.

1. [0 marks]: Read Chapters 17, 18. Do problems: 17.3, 17.4, 17.5, 18.2, 18.3, 18.5, 18.7.

2. [20 marks]: Consider an isothermal, ideal gas sphere, embedded within a low-density, hot
medium. As with our study of stellar structure, we are interested in equilibrium configurations,
but in this case we can no longer assume that the surface pressure vanishes. In the classic paper
W.B. Bonnor, MNRAS, 116, 351 (1956), Bonnor showed that pressure-confined isothermal
gas spheres would become unstable if sufficiently compressed. This is intimately related to
the Jeans’ instability, and here we will reproduce some of the relevant calculations. These
represent models of globules, the sites of star formation, within molecular clouds.

a) (5 marks) In principle, an equilibrium isothermal, ideal gas sphere is fully characterized
by two parameters: a mass and temperature. However, these are even more simple in
practice, forming a one-dimensional family of structures that then may be rescaled as
needed. This may be illustrated by conveniently “rationalizing” the equations of hydro-
static equilibrium. That is, defining, dimensionless versions of the enclosed mass, radius,
and density:

M = M̃M0 , r = r̃
GM0µmp

kT
, and ρ = ρ̃M0

(

kT

GM0µmp

)3

, (1)

respectively, where M0 is a mass scale (not necessarily the total mass!) and T is the
temperature. Using the equations of hydrostatic equilibrium, obtain differential equations
for ρ̃ and M̃ in terms of ρ̃, M̃ , and r̃.

b) (5 marks) Solve the equations in part (a) numerically, choosing ρ̃(0) = 1, to obtain ρ̃(r̃)
and M̃(r̃). Plot these for r̃ ∈ (0, 5]. Note that this is simply a special case of the set
of solutions you found in the previous assignment, with γ = 1 or, equivalently, n = ∞.
However, since n diverges, solving these via the Lane-Embden equation is not possible.
Nevertheless, you will be able to solve them in a very similar way with the same sort of
numerical alogrithm.

c) (5 marks) Up to some rescalings, your solution in part b provides the structure of the entire
family of isothermal gas spheres; spheres in different ambient media will be truncated
at different radii! For example, M(r) represents the mass of an isothermal gas sphere
of radius r, truncated at a surface pressure of Ps = ρ(r)kT/µmp. However, in our
rationalized expressions we can also renormalize among different total masses, total radii,
and temperatures! Hence, for any combination of cloud temperature (T ) and mass (M),
we may choose an r̃ and M0 such that our rationalized solution may be simply rescaled.

Explicitly, to generate a family of fixed-mass spheres with mass M and fixed temperature
T , we set

M0M̃(r̃) = M → M0 = M/M̃(r̃) , (2)

from which we recover the unscaled radius,

r = r̃
GMµmp

kTM̃(r̃)
. (3)

Using this, construct the surface pressure of a sequence of gas spheres with fixed mass
M = 1M⊙ and temperature T = 10 K. You may assume that the mean molecular weight
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is 2.4. Plot the surface pressure as a function of radius (in AU). Hint: This family of
solutions may be parameterized in a number of different ways, however, in practice it will
be easiest if we choose to do so in terms of r̃. See Fig. I of Bonnor (1956) to get an idea
if what you have makes sense.

d) (5 marks) Now consider simply a 1M⊙ gas sphere, enclosed within a radius R. This is a
gross mock-up of the isothermal sphere computation we performed above. Compute and
plot the Jeans’ mass associated with the average gas sphere density (i.e., ρ̄ ≡ 3M/(4πR3))
as a function of sphere radius. What happens when the sphere radius is compressed below
the pressure peak near r = 104 AU?

3. [10 marks]: In the computation of the Jeans’ mass we considered only thermal pressure as
a means to stop gravitational collapse. However, in many molecular clouds, magnetic pressure
is believed to play a critical, if not dominant, role in supporting against collapse. Here we
consider the ability of magnetic stresses to do this.

a) (2 marks) Recall that the Jeans’ mass, MJ , was obtained by relating the sound crossing
time to the free-fall time:

cs
RJ

=
1

tff
⇒ RJ = cstff ⇒ MJ ≡

4π

3
R3

J ρ ∝
c3s
ρ1/2

, (4)

since tff ∝ ρ−1/2. If we consider an initially unstable, uniform density cloud of gas
undergoing an isothermal collapse, this implies that where thermal pressure dominates,
MJ is related to the cloud radius, R, via a power law, i.e., MJ ∝ Rη. What is η? What
does this imply for the collapse dynamics (i.e., is the cloud becoming more or less unstable
as R shrinks?)? You may assume that the cloud remains uniform during collapse.

b) (1 marks) The critical physical input into the Jeans’ mass estimate was that changes in
the thermal pressure can only be propagated at speeds less than cs. If magnetic fields
are present, magnetic stresses can be propagated at the Alfvén velocity, vA ≡

√

B2/µ0ρ,
where µ0 is the permeability of free space. If B evolves solely due to flux conservation,
i.e., B ∝ Φ/R2 ∝ R−2, where Φ is the magnetic flux through some surface in the cloud,
how does vA/cs vary with R? Hint: again this should be a power-law.

c) (1 marks) At some point, the magnetic stresses will begin to dominate the thermal pres-
sures. This occurs when the magnetic pressure, PB = B2/2µ0, becomes larger than the
thermal pressure PT = ρkT/µmp ≃ ρc2s/2. In terms of the initial cloud size and the initial
ratio of the Alfvén velocity to the sound speed, at what radius, RA, does this occur?

For comparison, typically, vA/cs in the ISM is somewhere around 0.01–0.1.

d) (3 marks) When vA > cs, the magnetic stresses can be transmitted more rapidly than
thermal pressures, and thus the magnetic fields set the instability scale. Replacing cs with
vA in the derivation above, what is η now? Sketch MJ as a function of R throughout
a collapse, beginning with R0 > RA and extending through R < RA. Can a flux-frozen
magnetic field stabilize an initially unstable gas cloud alone?

e) (3 mark) When molecular clouds collapse they produce stars, which then inject additional
energy and momentum into the clouds from which they form, e.g., via stellar winds and
supernovae. This generates turbulence, and subsequently amplifies the magnetic field, and
thus our assumption that the magnetic flux remained fixed is violated below the scale at
which stars are formed. Making the rather over-simplified assumption that Φ ∝ R−α,
how does MJ depend upon R now (i.e., what is η now)? Again, sketch MJ , assuming that
α = 2 and the radius at which rapid star formation begins to occur is Rsf < RA < R0.
What does this imply for molecular cloud stability?
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