Assignment 3

Due March 5, 2015 at the beginning of lecture. Marked out of 30 and worth 10% of your final mark.

1. [0 marks]: Read Chapter 15. Do problems: 15.1, 15.3, 15.4, 15.5, 15.10
2. [5 marks]: Use dimensional analysis to calculate the exponents α and β in the scaling relation $L \propto M^{\alpha} R^{\beta}$, in the case of:
a) A purely radiative star, with an opacity given by Kramer's law, $\kappa \propto \rho T^{-3.5}$.
b) A purely radiative star, with a polytropic equation of state $P \propto \rho^{\gamma}$, and $\gamma=5 / 3$. Keep the assumption that the opacity is given by Kramer's law.
c) Assuming energy production dominated by the PP chain, derive a scaling relation for luminosity as a function of mass only, in each of the two scenarios above.
3. [25 marks] Complete the following problem:

The Lane-Emden equation gives a solution for the structure of a stellar interior.
a) (2 marks) Show that the equation of hydrostatic equilibrium and the equation of mass continuity can be combined to give:

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(\frac{r^{2}}{\rho} \frac{d P}{d r}\right)=-4 \pi G \rho \tag{1}
\end{equation*}
$$

b) (1 mark) Now assume a polytropic equation of state, $P=K \rho^{\gamma}$, where K is a constant. Show that Equation 1 becomes

$$
\begin{equation*}
\frac{K \gamma}{4 \pi G} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \rho^{\gamma-2} \frac{d \rho}{d r}\right)=-\rho \tag{2}
\end{equation*}
$$

This is a second-order ordinary differential equation for ρ, and can be solved numerically.
c) (1 mark) Make the variable substitutions

$$
\begin{equation*}
x=r / \alpha \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\left(\frac{\rho}{\rho_{c}}\right)^{\gamma-1} \tag{4}
\end{equation*}
$$

where ρ_{c} is the central density and α is a collection of constants. Show that, with an appropriate choice of α,

$$
\begin{equation*}
\frac{1}{x^{2}} \frac{d}{d x}\left[x^{2} \frac{d \theta}{d x}\right]=-\theta^{n} \tag{5}
\end{equation*}
$$

or, in integral form:

$$
\begin{equation*}
x^{2} \frac{d \theta}{d x}=-\int x^{2} \theta^{n} d x \tag{6}
\end{equation*}
$$

where $n=1 /(\gamma-1)$. This is known as the Lane-Emden equation.
d) (2 marks) Determine and justify appropriate boundary conditions for θ and $\dot{\theta}$ at $x=0$.
e) (3 marks) Write a program to calculate θ as a function of x, for any input value of n. You will have to do this numerically (analytic solutions are only possible for $\mathrm{n}=0, \mathrm{n}=1$ and $\mathrm{n}=5)$. See the hints below for help doing this. Plot θ as a function of x for $n=0,1,2,3,4$ and 5 .
f) (3 marks) Write the mass continuity equation as an integral equation, in terms of the variables α, x, ρ_{c} and $d \theta / d x$. Combine with the integral form of the Lane-Emden equation to obtain an expression for M_{r} as a function of these variables (you don't need to integrate anything).
g) (3 marks) For this, and all following parts, assume $\mathbf{n}=\mathbf{3}$. Assume the outer radius of the star $r=R_{\text {star }}$ corresponds to x_{\circ}, where the density (θ) is equal to zero. Use your numerical solution of $\theta(x)$ to find a numerical value of α for $R_{\text {star }}=1 R_{\text {Sun }}$. Using your result from part f), calculate ρ_{c} for a solar mass star (i.e. $\left.M\left(R_{\text {star }}\right)=1 M_{\text {Sun }}\right)$. Finally, you can solve for the constant K.
h) (4 marks) Now compute ρ, P and T as a function of $r / R_{\text {star }}$ and show the results graphically. Assume a fully ionized gas with mass fractions $X=0.55$ and $Y=0.4$ (independent of radius).
i) (4 marks) Calculate the energy generation rates due to the proton-proton chain and the CNO cycle (assume $X_{\mathrm{CNO}}=0.03 X$), as a function of r / R_{star}. Plot $\mathrm{dL} / \mathrm{dr}$ as a function of $r / R_{\text {star }}$. From this, calculate the total luminosity of the star, at $r=R_{\text {star }}$.
j) (2 marks) Use your code to compute the total luminosity, central temperature and central density for i) a star with $M_{\text {star }}=20 M_{\text {Sun }}$ and $R_{\text {star }}=10 R_{\text {Sun }}$ and ii) a star with $M_{\text {star }}=0.5 M_{\text {Sun }}$ and $R_{\text {star }}=0.6 R_{\text {Sun }}$. Compare these with your results for the solar-mass star.

Hints for the numerical integration:

1. Start with a large vector of x values, ranging from 0 to 7 , linearly spaced.
2. Using appropriate boundary conditions for $\theta(0)$ and $\dot{\theta}(0)$, solve for $\ddot{\theta}(0)$.
3. Use your value of $\ddot{\theta}(0)$ to estimate the value of $\dot{\theta}(\Delta x)$. Similarly, use the value of $\dot{\theta}(0)$ to estimate the value of $\theta(\Delta x)$.
4. Compute $\ddot{\theta}(\Delta x)$ from $\dot{\theta}(\Delta x)$ and $\theta(\Delta x)$.

5 . Iterate steps 3-4 until you reach $\theta\left(x_{\circ}\right)=0$.

