## Assignment 1

Due Jan 20, 2015 at beginning of class. Marked out of 30 and worth $10 \%$ of your final mark.

1. [0 marks]: Read Chapter 13. Suggested problems: 13.2, 13.3, 13.5, 13.6, 13.7, 13.11. You do not have to hand these in; they will not be marked. Solutions will be provided.

## 2. [15 marks]:

a) (5 marks) The file hipparcos.txt contains parallaxes and magnitudes in three filters (B, V and I) for many nearby stars (see the file hipparcos_cols.txt for column definitions). Make a graph of absolute V magnitude $\left(M_{V}\right)$ as a function of (B-V) colour. Orient your graph so brighter stars are at the top, and bluer stars are at the left.
Hint: The file template. $m$ will get you started to make a plot in matlab.
b) ( 5 marks) Use eq 13.36 to calculate the temperature of each star and plot $\log L_{V} / L_{\odot}$ as a function of $\log T$.
c) (5 marks) Use the Stefan-Boltzmann law to calculate $L$ as a function of $T$ for blackbodies of different radii: $R=R_{\odot}, R=0.2 R_{\odot}$ and $R=5 R_{\odot}$. Show these as lines on your graph from part b. What can you infer about how the radii of stars depends on their temperature?
3. 15 marks The file W15_assignment1_orbit.dat gives the orbital phase, the radial velocity (in km/s) of each star, and the apparent magnitude of an unresolved, double-lined spectroscopic binary system. The period is 50 days.
a) (2 marks) Make a graph of radial velocity as a function of time, over one full orbit. Show both stars on the same graph.
b) (3 marks) From the graph in a, calculate the value of $m \sin ^{3} i$ for each star.
c) (2 marks) Make a graph of the logarithm of $L / L_{\circ}$ as a function of time, where $L_{\circ}$ is the luminosity when both stars are visible (no eclipse).
d) (3 marks) Using the graph and data from c), calculate the ratio of temperatures of the two stars.
e) ( 5 marks) Using the graph and data from c), calculate the radius of each star.

