
OGRE

Pittfals & Design
proposal for Ogre 2.0

Matías Nazareth Goldberg, 2012

Ogre forum user: dark_sylinc

Pitfalls

●Too many cache misses :(
●Inefficient Scene traversal & processing
●Fat, unflexible, vertex format
●Fixed functions vs programmable shaders
●“setFog”, etc

●Too many cache misses :(

●Inefficient Scene traversal & processing

●Fat, unflexible, vertex format

●Fixed functions vs programmable shaders

●“setFog”, etc

Cache misses

●Caches matter. A LOT.
●Sergey Solyanik (from Microsoft):

“Linux was routing packets at ~30Mbps [wired], and wireless at ~20.

Windows CE was crawling at barely 12Mbps wired and 6Mbps wireless.

...

We found out Windows CE had a LOT more instruction cache misses

than Linux. ...

After we changed the routing algorithm to be more cache-local, we

started doing 35MBps [wired], and 25MBps wireless - 20% better than

Linux.” [1]

Arghhh!!!!

MY EYES!!!

CACHE MISS / LHS

CACHE MISS / LHS

X6 CACHE MISS / LHS

X6 CACHE MISS / LHS

See “Typical C++ Bullshit” by
@mike_acton [2]

See “Culling the Battlefield” by Daniel Colling
(DICE)[3]

Frostbyte* 2 uses SoA (structure of arrays), SIMD and conditional

moves to optimize this routine

http://macton.posterous.com/roundup-recent-sketches-on-concurrency-data-d
http://publications.dice.se/attachments/CullingTheBattlefield.pdf

Cache misses, cache misses
everywhere...

This all over Ogre code.

● Made sense in 2000, where CPUs were ALU bounds.

●But ALU growth is much higher than memory latency & bandwidth!

● See “Pitfalls of Object Oriented Programming” [4], by SCEE

✔x86 & x64 CPUs have branch predictors to alleviate the problem

✗But Ogre is expanding to mobile android & iPhone devices! :(

✗And consoles too! :(

http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf

● Good
const Vector3 & Node::_getDerivedPosition(void) const

{

_updateFromParent();

return mDerivedPosition;

}

const Vector3 & Node::_getDerivedPosition(void) const

{

#ifdef _DEBUG

assert(!m_needParentUpdate); //m_needParentUpdate is only present in

debug

#endif

return mDerivedPosition;

}

//Function for newbies

const Vector3 & Node::_getDerivedPositionUpdated(void) const

{

_updateFromParent();

return mDerivedPosition;

}

✔ Better

● Good
const Vector3 & Node::_getDerivedPosition(void) const

{

_updateFromParent();

return mDerivedPosition;

}

const Vector3 & Node::_getDerivedPosition(void) const

{

#ifdef _DEBUG

assert(!m_needParentUpdate); //m_needParentUpdate is only present in

debug

#endif

return mDerivedPosition;

}

//Function for newbies

const Vector3 & Node::_getDerivedPositionUpdated(void) const

{

_updateFromParent();

return mDerivedPosition;

}

✔ Better

●There are ocassions when updating more than once per

frame is unavoidable → call _updateFromParent

manually or _getDerivedPositionUpdated instead.

●If you really need to do this, a good programmer should

be aware of what's happening internally in it's engine

anyway.

A good game and/or render engine design would leave

updating the derived position to a centralized position,

and should be done once per frame only.

Pipeline stalls
●Floating point operations & branches don't go together.

●Use branch-less conditional moves.

●fsel in PPC

●fcmov in x87 FPU

●Conditional move just introduced in SSE5. → But can be

performed with compare & mask instructions!

●See “Down With fcmp: Conditional Moves For

Branchless Math”, by Elan Rusky (Valve) [5]

http://assemblyrequired.crashworks.org/2009/01/04/fcmp-conditional-moves-for-branchless-math/

Pipeline stalls – conditional moves

void Node::updateFromParentImpl(void) const

{

// Update orientation

const Quaternion& parentOrientation = mParent->_getDerivedOrientation();

parentOrientation = fsel(mInheritOrientation, parentOrientation * mOrientation, mOrientation);

// Update scale

const Vector3& parentScale = mParent->_getDerivedScale();

// Scale own position by parent scale, NB just combine as equivalent axes, no shearing

mDerivedScale = fsel(mInheritScale, parentScale * mScale, mScale);

mDerivedPosition = parentOrientation * (parentScale * mPosition);

mDerivedPosition += mParent->_getDerivedPosition();

}

“fsel” function uses fsel/fcmov/sse. Depending on the architecture. Ensure by looking

at assembly it inlines as desired.

Now, this is more like it:

●Create a mask → mask = cmp(condition1, condition2);

●AND & NOT both args→ t1 = arg1 & mask;

→ t2 = arg2 &
~mask;

●OR both results → r = t1 | t2

Total: 4 instructions! :)

●Naive approach:

Conditional moves with SSE2

●Create a mask → mask = cmp(condition1, condition2);

●AND & NOT both args→ t1 = arg1 & mask;

→ t2 = arg2 &
~mask;

●OR both results → r = t1 | t2

Total: 4 instructions! :)

●Naive approach:

Conditional moves with SSE2

Internally, some SSE architectures flag xmm registers as containing integer or

floating point data. Using integer operations (bitwise logic) on floating point xmm

registers will incur a performance penalty (flagging the register as integer, then

flagging it back as float when used again).

That's why MOVAPS (floats) appears to do the same as MOVDQA (ints).

Conditional moves with SSE2

✔Smart approach:
●Create a mask → mask = cmp(condition1, condition2);

●Sub arg1 & arg2 → t = arg2 - arg1

●AND temporary 't' → t = t & mask;

●Add masked t to arg1→ r = arg1 + t;

Total: 4 instructions! ;)

Conditional moves with SSE2

✔Smart approach:
●Create a mask → mask = cmp(condition1, condition2);

●Sub arg1 & arg2 → t = arg2 - arg1

●AND temporary 't' → t = t & mask;

●Add masked t to arg1→ r = arg1 + t;

Total: 4 instructions! ;)
Addition & substraction are trivial operations. The instruction count is the same

(cycle count might vary though) but in this approach, only one register is

flagged from float to int then back to float; as opposed to the naive approach,
which flagged both registers.
Won't work if arg1 has nan or infs! (use assert & keep naive approach too)

“Premature optimization is root of all evil”

“Premature optimization is root of all evil”
BULLSHIT!

I think of these guys everytime I see a loding screen.

“Premature optimization is root of all evil”
BULLSHIT!

I think of these guys everytime I see a loding screen.
THESE ARE NOT PREMATURE NOR MICRO-OPTIMIZATIONS!!!

This is a focus on hotspots based on profiled runs of real world

applications from +10-year-old code.

SIMD, parallel, cache-friendly algorithms are the industry standard today

(CryEngine* 2, Frostbyte* 2 engine, Uncharted* engine)

Performance gains from applying these techniques are very real and

worthwhile.

Not convinced?

By the way, inside Distant Souls.exe, 40 samples are spent inside a wait

function, which is the logic thread waiting until the 16ms of it's fixed frame rate

is over (live spin lock). The render thread runs at variable framerate.

Still not convinced?

Distant Souls (Ogre)

Taken on Intel Core 2 Quad Extreme X9650 @3.0Ghz
AMD Radeon HD 7770 1 GB RAM
4 GB RAM
1280x720, No MSAA, Max Quality

Distant Souls runs on 2 threads. One thread is
exclusively for Ogre while the other one
handles the logic & physics.

Distant Souls (Ogre)

Taken on Intel Core 2 Quad Extreme X9650 @3.0Ghz
AMD Radeon HD 7770 1 GB RAM
4 GB RAM
1280x720, No MSAA, Max Quality

Distant Souls runs on 2 threads. One thread is
exclusively for Ogre while the other one
handles the logic & physics.

Assassin's Creed* 2 (Ubisoft*)

Taken on Intel Core 2 Quad Extreme X9650 @3.0Ghz
AMD Radeon HD 7770 1 GB RAM
4 GB RAM
1280x720. No MSAA, Max Quality

No attempt has been made to dissassemble, reverse-engineer, or violate Ubisoft
property in any form. It is believed this picture to fall under fair use because: a. it
is used for educational and/or research purposes. b. It's only used for
comparison, commentary & ilustration purposes only. c. It's content is not
considered substantial.

Assassin's Creed* 2 (Ubisoft*)

Taken on Intel Core 2 Quad Extreme X9650 @3.0Ghz
AMD Radeon HD 7770 1 GB RAM
4 GB RAM
1280x720. No MSAA, Max Quality

No attempt has been made to dissassemble, reverse-engineer, or violate Ubisoft
property in any form. It is believed this picture to fall under fair use because: a. it
is used for educational and/or research purposes. b. It's only used for
comparison, commentary & ilustration purposes only. c. It's content is not
considered substantial.

Twice performance with 3x objects....
(we're clearly doing something wrong)

Distant Souls' render thread is taking 43ms. The GPU

spends a lot of idle time.

Logic & physics thread runs at steady 16ms (unlocking it

yields 8ms)

Render Thread only updates all visible objects position

from other thread and calls renderOneFrame

Main reasons are cache misses and complex compositor

passes (next slides will talk about it's innefficiency).

●Too many cache misses :(

●Inefficient Scene traversal & processing

●Fat, unflexible, vertex format

●Fixed functions vs programmable shaders

●“setFog”, etc

Poor data updates

Poor data updates

When this function returns true, Ogre will then

proceed to update every bone of the skeleton.

It uses mFrameBonesLastUpdated to keep track of

“dirty” updates according comparing against

current global frame #.

This function may get called between 3 to 6
times per frame depending on effects complexity.

THIS IS WRONG IN SO MANY LEVELS

Poor data updates

When this function returns true, Ogre will then

proceed to update every bone of the skeleton.

It uses mFrameBonesLastUpdated to keep track of

“dirty” updates according comparing against

current global frame #.

This function may get called between 3 to 6
times per frame depending on effects complexity.

This pattern repeats itself with
mFrameAnimationLastUpdated & mDirtyFrameNumber

WHAT IS GOING ON???

Let's take a look at the big picture:

Typical Ogre render flow
renderOneFrame()

Typical Ogre render flow
renderOneFrame()

SceneManager::_renderScene()

●Update animations ('if' to check for dirtiness)
●Update all bone skeletons ('if' to check for dirtiness)
●Transform all nodes (more on this later, also checks for dirty)
●Cull all objects
●Sort them using the RenderQueue

Typical Ogre render flow
renderOneFrame()

SceneManager::_renderScene()

●Update animations ('if' to check for dirtiness)
●Update all bone skeletons ('if' to check for dirtiness)
●Transform all nodes (more on this later, also checks for dirty)
●Cull all objects
●Sort them using the RenderQueue

Create batch

(i.e. Materials, draw calls)

Typical Ogre render flow
renderOneFrame()

SceneManager::_renderScene()

●Update animations ('if' to check for dirtiness)
●Update all bone skeletons ('if' to check for dirtiness)
●Transform all nodes (more on this later, also checks for dirty)
●Cull all objects
●Sort them using the RenderQueue

Draw to screen

Create batch

(i.e. Materials, draw calls)

Typical Ogre render flow
●SceneManager::_renderScene() calls itself many times.

–Once for every shadow map
–Once for every compositor “render_scene” pass.
●PSSM/CSM with 3 splits + a custom render_scene pass
= 6 calls to itself :@

Typical Ogre render flow
●SceneManager::_renderScene() calls itself many times.

–Once for every shadow map
–Once for every compositor “render_scene” pass.
●PSSM/CSM with 3 splits + a custom render_scene pass
= 6 calls to itself :@
✗No reuse of culling data.

Typical Ogre render flow
●SceneManager::_renderScene() calls itself many times.

–Once for every shadow map
–Once for every compositor “render_scene” pass.
●PSSM/CSM with 3 splits + a custom render_scene pass
= 6 calls to itself :@
✗No reuse of culling data.

✗Lots of unnecessary variables for tracking “dirty” states → Cache

pollution & memory explosion.

Typical Ogre render flow
●SceneManager::_renderScene() calls itself many times.

–Once for every shadow map
–Once for every compositor “render_scene” pass.
●PSSM/CSM with 3 splits + a custom render_scene pass
= 6 calls to itself :@
✗No reuse of culling data.

✗Lots of unnecessary variables for tracking “dirty” states → Cache

pollution & memory explosion.

✗Lots of unnecessary 'if' (cache misses, pipeline stalls)

Whats wrong with this script?
compositor Post/DeferredShading
{

technique
{

texture_ref GBuffer DeferredShading
GBuffer

target_output
{

pass render_scene
{

first_render_queue
10

last_render_queue
90

}

pass render_quad
{

material
SomePostProcessMaterial

input
0 GBuffer 0

}

pass render_scene
{

first_render_queue

Whats wrong with this script?
compositor Post/DeferredShading
{

technique
{

texture_ref GBuffer DeferredShading
GBuffer

target_output
{

pass render_scene
{

first_render_queue
10

last_render_queue
90

}

pass render_quad
{

material
SomePostProcessMaterial

input
0 GBuffer 0

}

pass render_scene
{

first_render_queue

The cull stage will traverse
objects from 10 to 95; then
before sorting in the
RenderQueue, all objects
between 91 & 95 will be
discarded

Whats wrong with this script?
compositor Post/DeferredShading
{

technique
{

texture_ref GBuffer DeferredShading
GBuffer

target_output
{

pass render_scene
{

first_render_queue
10

last_render_queue
90

}

pass render_quad
{

material
SomePostProcessMaterial

input
0 GBuffer 0

}

pass render_scene
{

first_render_queue

The cull stage will traverse
objects from 10 to 95; then
before sorting in the
RenderQueue, all objects
between 91 & 95 will be
discarded

The cull stage will traverse
objects from 10 to 95 (again)
and discard objects 10 to 90

Whats wrong with this script?
compositor Post/DeferredShading
{

technique
{

texture_ref GBuffer DeferredShading
GBuffer

target_output
{

pass render_scene
{

first_render_queue
10

last_render_queue
90

}

pass render_quad
{

material
SomePostProcessMaterial

input
0 GBuffer 0

}

pass render_scene
{

first_render_queue

The cull stage will traverse
objects from 10 to 95; then
before sorting in the
RenderQueue, all objects
between 91 & 95 will be
discarded

The cull stage will traverse
objects from 10 to 95 (again)
and discard objects 10 to 90

THE RENDER QUEUE IS SMART.
BUT THE CULLING STAGE IS
COMPLETELY INEFFICIENT

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Compositor Manager

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

Compositor Manager

Cull scene (split by
render queue layers)

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager

Cull scene (split by
render queue layers)

List of

culled

object

s

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager

Cull scene (split by
render queue layers)

List of

culled

object

s

Prepare shadows

Render Queue
SortRender Queue

Sort

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager

Cull scene (split by
render queue layers)

Cull scene (split by
render queue layers)

List of

culled

object

s

Prepare shadows

Render Queue
SortRender Queue

Sort

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager

Cull scene (split by
render queue layers)

List of

culled

object

s

Cull scene (split by
render queue layers)

List of

culled

object

s

Prepare shadows

Render Queue
SortRender Queue

Sort

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Ideal/proposed render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager

Cull scene (split by
render queue layers)

List of

culled

object

s

Cull scene (split by
render queue layers)

List of

culled

object

s

Prepare shadows

Render Queue
Sort

Render Queue
SortRender Queue

Sort

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Render Queue
Sort

Render Queue
Sort

Render Queue
Sort

Batch creation
(materials,

draw calls, etc)

Batch creation
(materials,

draw calls, etc)

Batch creation
(materials,

draw calls, etc)

BATCH SUBMIT

Draw to screen

Strea

m

Out

Is
stre
am
out?

Back to
Composit

or
Mgr

Render order
(shadow
maps go first)

Proposed render flow
✔Update-once philosophy. Cull lists can be reused for multiple passes.

✔Clear, modular roles for every component

✔Multiple SIMD opportunities

✔Highly threadable. “Read only” minimizes false cache sharing.

✔Processing multiple passes concurrently on the CPU → Great opportunity for
environment mapping.

✔DX11 batch-threading ready

✗Needs batch creation serialization for non-threadable render systems (i.e.
DX9)

•Compositor Manager is no longer an optional component. It's a core one.

•Default compositor for those who don't need it

•It's responsible for deciding which passes depend on other passes (race
conditions, impossible scenarios i.e. Stream Out)

✔HighLevelCull implementations, UpdateAllAnimations, UpdateAllTransforms
can have threading of their own.

Proposed render flow

●Note: Shadows don't cull further based on the cull

list from the original pass; they have to build their

own cull list from scratch like any other pass. The

original pass' list is used for shadow's camera

frustum calculations, etc.

●Note 2: There's an optional tradeoff between

processing rendering two+ passes in parallel, and

reusing the cull list from a previous pass

Proposed: HighLevelCull()

●What we currently know as “OctreeSceneManager”, “BSPSceneManager”, etc;

but lighter.

●Binary trees for Graphics don't tend to scale well in multithreading due to their

heterogeneous nature (sparse trees)

●Top trend in 2000. Still useful in Physics engines & Scientific research.

●Have horrendous cache locality unless using a custom memory allocator. See

“Second Generation of Behavior Trees” by Alex J. Champandard [6] for optimal

locality in tree nodes.

●Voxel grid easier to parallelize using simple pointer arithmetic (a grid within a

grid). → Make it right or beware of false cache sharing!

http://aigamedev.com/insider/tutorial/second-generation-bt/

Proposed: HighLevelCull()

●Grids within grids and Trees with high depth have a lot of book-keeping.

Specially if we try to keep the Entities in each cell SIMD-ready and in the same

memory block every time they move to another cell. A depth higher than 2

shouldn't usually be needed.

●The main purpose of HighLevelCull is to prevent updating ALL animations &

transformations, while limiting the input for the next culling stage when having

vast scenes.

•Think Just Cause* 2 size.

●We can skip updating objects 10-20km away.

✗Because currently, updating skeletons can be a bottleneck (depending on

bone count & number of entities)

Grids within Grids

At Depth = 0 → Simple 3D Grid
Depth 0: 4x4x4
Total nodes = 64
Very fast for random access. Needs to cull 64 blocks/nodes.
32x32x2 km paremeter given at startup → Physics engines require this anyway
(broadphase size)

At Depth >= 1 → Grid within grid
Depth 0: 3x3x3
Depth 1: 2x2x1
Total nodes = 108 - (On screenshot: 100)
Good for large empty regions. Hierarchy occlusion culling (first cull Depth Lvl. 0)
may gain / lose performance – Dependes on scenario.

Each cell holds a contiguous array(s) of SceneNodes & SoA data (Vector, matrix, etc)
●Ideally, already grouped by render queue ID.
This is a HighLevelCull suggestion. Each implementation can do it's own, as long as
it's output is an array (or various arrays) of contiguous culled entities, filtered by
render queue ID.
Grid's resolution (#cells), size (in Ogre units) and depth can be to adjusted by user.

Can grids grow if the world becomes bigger? → Implementation defined.
●May increase the 3D grid's resolution, ignore, etc.
What happens if the obj. falls out of grid? → Implementation defined.
●May hide the object, leave it in the closest edge cell, move to orphan list, grow the
grid's size, etc.
Resolution always 2x2x2? → That's an octree.
Many depths? → Almost always bad for performance.

Summary of alternatives: “Sparse-world storage formats” by
Tom Forsyth [16]
●Hash maps based on XYZ coord. may be a good alternative

Main purpose of HighLevelCull is to do efficient hierarchy
culling.

A null HighLevelCull wouldn't cull, but still needs to make sure
it's output complies with specifications (filter by requested
render queues, keep chunks in SoA & SIMD capable).

http://home.comcast.net/%7Etom_forsyth/blog.wiki.html

Proposed: UpdateAllAnimations

Not much to say...

●There's no reason we can't split entities into

multiple threads.

●Current implementation doesn't enforce read-only

at the time the bones are updated :|

●Chaotic skeleton update order makes it worse to

fix it.

Proposed: UpdateAllTransforms()

Currently Ogre uses a depth-first traversal of the scene.
1

2 5 6

3 4

SceneNode is using an unordered/hash

map to store it's children!

●But insertions & deletions are rare

●And iteration is the most important!

Proposed: UpdateAllTransforms()

Currently Ogre uses a depth-first traversal of the scene.
1

2 5 6

3 4

SceneNode is using an unordered/hash

map to store it's children!

●But insertions & deletions are rare

●And iteration is the most important!
Use Pittfals of Obj. Oriented Programming [4] approach:

●Breath-first
●All objects in same hierarchy level are memory contiguous

(re-parenting is very rare)

Level 2, std::vector<SceneNode*>

Level 1, std::vector<SceneNode*>

Level 0, std::vector<SceneNode*>

Proposed: UpdateAllTransforms()

1

2 3

4 5 6 7

Cache-friendly breath first:

Update transform

Update transform

Update transform

Level 2, std::vector<SceneNode*>

Level 1, std::vector<SceneNode*>

Level 0, std::vector<SceneNode*>

Proposed: UpdateAllTransforms()

1

2 3

4 5 6 7

Cache-friendly breath first:

Add bounding box

Add bounding box

Add bounding box

Level 2, std::vector<SceneNode*>

Level 1, std::vector<SceneNode*>

Level 0, std::vector<SceneNode*>

Proposed: UpdateAllTransforms()

1

2 3

4 5 6 7

Cache-friendly breath first:

All SceneNodes* are actually contiguous in memory.

Nodes 2 & 3 can be processed in parallel.; after Level 0 finished (MT barrier sync)

Nodes 4-7 can be processed in parallel; after Level 1 finished (MT barrier sync)

Don't process them interleaved in each thread, or else false cache sharing will occur

Use SoA for best cache locality, but also for SIMD capabilities

Proposed: UpdateAllTransforms()
Node listeners?

Calling an indirect function, like a node listener, after updating each scene node would

cause a pipeline stall (LHS: Load hit store)

But transform update is now centralized and done only once[*]

→ let's take advantage of that!

[*] The user ought to be able to manually call UpdateAllTransform outside renderOneFrame for tight control. Also

don't forget “_getDerivedPositionUpdated” may be possible

Proposed: UpdateAllTransforms()
Node listeners?

Calling an indirect function, like a node listener, after updating each scene node would

cause a pipeline stall (LHS: Load hit store)

But transform update is now centralized and done only once[*]

→ let's take advantage of that!

Create an array of registered listeners. Each SceneNode will still keep

track of it's attached listener.

After all nodes have been updated, iterate through the array calling the

listeners

●The idea? → don't do a thousand checks in a thousand SceneNodes

when only one SceneNode has a listener...
[*] The user ought to be able to manually call UpdateAllTransform outside renderOneFrame for tight control. Also

don't forget “_getDerivedPositionUpdated” may be possible

SoA in SceneNodes
class SoA_Vector3

{

float *m_chunkBase; //Large preallocated memory

unsigned char m_index; //Value between [0; 4) for SSE

Vector3 getAsVector3() const

{

return Vector3(m_chunkBase[0 + m_index] //X

m_chunkBase[4 + m_index], //Y

m_chunkBase[8 + m_index]); //Z

}

};

This is how to convert between SoA (for packed

SSE arithmetic) and AoS (for scalar arithmetic)

SoA in SceneNodes

WAIT! That's not

cache friendly!

class SoA_Vector3

{

float *m_chunkBase; //Large preallocated memory

unsigned char m_index; //Value between [0; 4) for SSE

Vector3 getAsVector3() const

{

return Vector3(m_chunkBase[0 + m_index] //X

m_chunkBase[4 + m_index], //Y

m_chunkBase[8 + m_index]); //Z

}

};

SoA in SceneNodes

WAIT! That's not

cache friendly!

YES IT IS

class SoA_Vector3

{

float *m_chunkBase; //Large preallocated memory

unsigned char m_index; //Value between [0; 4) for SSE

Vector3 getAsVector3() const

{

return Vector3(m_chunkBase[0 + m_index] //X

m_chunkBase[4 + m_index], //Y

m_chunkBase[8 + m_index]); //Z

}

};

Grid / Octree subdivision (2D slice, for sake of simplifaction)

SoA data layout
Let's take an inside look:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

Grid / Octree subdivision (2D slice, for sake of simplifaction)

SoA data layout
Let's take an inside look:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

Each octant has it's own chunk

✗Must copy the SceneNode's SoA data when moving to another octant.

✔Low depths & small grid sizes to keep book-keeping to a minimum

Must be large enough to hold all scene nodes in it's area

→ User has to hint the implementation

Can reallocate itself (grow) at the expense of an fps spike (ouch!)

→ Might use an array of m_chunks to overcome this problem?

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];SceneNode 0: → m_chunkBase 0x00000000 m_index =

0

SceneNode 1: → m_chunkBase 0x00000000 m_index =

1

SceneNode 2: → m_chunkBase 0x00000000 m_index =

2

SceneNode 3: → m_chunkBase 0x00000000 m_index =

3

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];SceneNode 0: → m_chunkBase 0x00000000 m_index =

0

SceneNode 1: → m_chunkBase 0x00000000 m_index =

1

SceneNode 2: → m_chunkBase 0x00000000 m_index =

2

SceneNode 3: → m_chunkBase 0x00000000 m_index =

3

SceneNode 4: → m_chunkBase 0x00000030 m_index =

0

SceneNode 5: → m_chunkBase 0x00000030 m_index =

1

SceneNode 6: → m_chunkBase 0x00000030 m_index =

2

SceneNode 7: → m chunkBase 0x00000030 m index =

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Zm_chunk =

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk =

SceneNode 0

00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Z

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk =

SceneNode 0 SceneNode 1

00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Z

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk =

SceneNode 0 SceneNode 1 SceneNode 2

00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Z

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk =

SceneNode 0 SceneNode 1 SceneNode 2 SceneNode 3

00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Z

Grid / Octree subdivision

SoA data layout
Let's asume m_chunk starts at 0x00000000:

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3]; m_chunk = new float[resizableCount * 3];

m_chunk =
00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z ZSceneNode 0: → m_chunkBase 0x00000000

m_index = 0

SceneNode 1: → m_chunkBase 0x00000000

m_index = 1

SceneNode 2: → m_chunkBase 0x00000000

m_index = 2

SceneNode 3: → m_chunkBase 0x00000000

m_index = 3

SceneNode 4: → m_chunkBase 0x00000030

m_index = 0

SceneNode 5: → m_chunkBase 0x00000030

m_index = 1

SceneNode 6: → m_chunkBase 0x00000030

m_index = 2

S N d 7 h kB 0 00000030

SoA data layout
How is this cache friendly then?

How caches work:

●Fetches are done in blocks. If a single byte in a block was

modified, the whole block needs to be flushed again.

●Most (if not all) x86/x64 CPUs fetch 64-byte blocks

m_chunk =

SceneNode 0

00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Z

SceneNode 0's XYZ data is only 36 bytes :)

It fits in a single fetch!
And when accessing SceneNode 1's data, it

will also be already in the cache!

SoA data layout
How is this cache friendly then?

How caches work:

●Fetches are done in blocks. If a single byte in a block was

modified, the whole block needs to be flushed again.

●Most (if not all) x86/x64 CPUs fetch 64-byte blocks

m_chunk =

SceneNode 0

00 04 08 0c 10 14 18 1c 20 24 28 2c 30 34 38 3c 40 44 48 4c 50 54 58 60

X X X X Y Y Y Y Z Z Z Z X X X X Y Y Y Y Z Z Z Z

SceneNode 0's XYZ data is only 36 bytes :)

It fits in a single fetch!
And when accessing SceneNode 1's data, it

will also be already in the cache!
✗ Many mobile PPC & ARM devices fetch 32-byte blocks :(

•Must be able to adjust (reduce or increase) at compile-time number of floats that can be

packed together; with option to leave blank unused areas (depends on arch.)

SoA data layout
Extremely cache friendly.
Must allow reducing/increasing packing (Mobile: 1 to 3 floats. VMX: 8 floats)
Cull list returned by HighLevelCull() must follow these rules!

●It will be also responsible for keeping locality of the SceneNodes & entities.

Store Quaternions, Scale & 4x4 Matrices in the same way.
●Transform, normalize & cull 4 objects at once, in multiple threads
→ Taking DICE* [3] idea to a whole new level!

●Final matrix cache result must be stored AoS → 16 SoA floats won't fit in a single

fetch and will polute the cache. UpdateAllAnimation performs packed operations,

but must store (cache) all matrices in scalar form for the RenderQueue to prepare

the batch. Scalar mat. may have to be thread-local.
→ Use non-temporal stores to write the scalar matrix result!
→ After low level culling, the order can't be guaranteed and operations must go
scalar.

SoA data layout

Matrix 4x4 layout: 4 * 4 * 4 * 4 = 256 bytes = 4 fetches
00 04 08 0c 10 14 18 1c 20 24 28 2c 30

a11 b11 c11 d11 a12 b12 c12 d12 a13 b13 c13 d13 ...

Quaternion layout: 4 * 4 * 4 = 64 bytes = 1 fetch
00 04 08 0c 10 14 18 1c 20 24 28 2c 30

X X X X Y Y Y Y Z Z Z Z W..

Matrix 4x4
256 bytes

2xVector3
96 bytes
(scale and pos)

Quaternion
64 bytes

416 bytes
7 fetches

UpdateAllTransforms()

Matrix 4x4
256 bytes

2xVector3
96 bytes
(scale and pos)

Quaternion
64 bytes

416 bytes
7 fetches

UpdateAllTransforms()

UpdateAllAnimations() - Alternative 1
2xMatrix 4x3

384 bytes
lerp(time0_mat, time1_mat

)

384 bytes
6 fetches

2x(2xVector3
+ Quat.)

lerp(pos, rot, scale)

320 bytes
6 fetches

(not 5! Have to sum
Individual fetches)

UpdateAllAnimations() - Alt. 2

Matrix 4x4
256 bytes

2xVector3
96 bytes
(scale and pos)

Quaternion
64 bytes

416 bytes
7 fetches

UpdateAllTransforms()

UpdateAllAnimations() - Alternative 1
2xMatrix 4x3

384 bytes
lerp(time0_mat, time1_mat

)

384 bytes
6 fetches

During cull stage
3xMatrix

4x4
768 bytes

world, view, proj

768 bytes
12 fetches

2x(2xVector3
+ Quat.)

lerp(pos, rot, scale)

320 bytes
6 fetches

(not 5! Have to sum
Individual fetches)

UpdateAllAnimations() - Alt. 2

Matrix 4x4
256 bytes

2xVector3
96 bytes
(scale and pos)

Quaternion
64 bytes

416 bytes
7 fetches

Have fun with PREFETCHh!

Most of this data is
NON-TEMPORAL

UpdateAllTransforms()

UpdateAllAnimations() - Alternative 1
2xMatrix 4x3

384 bytes
lerp(time0_mat, time1_mat

)

384 bytes
6 fetches

During cull stage
3xMatrix

4x4
768 bytes

world, view, proj

768 bytes
12 fetches

MUST- READ! Chapter 7 from Intel® 64
and IA-32 Architectures Optimization
Reference Manual [7]

2x(2xVector3
+ Quat.)

lerp(pos, rot, scale)

320 bytes
6 fetches

(not 5! Have to sum
Individual fetches)

UpdateAllAnimations() - Alt. 2

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

Due to it's reusage
on each entity, this
data is probably

TEMPORAL

What about shared data? (i.e. AABB, bounding radius)
Can't guarantee SIMD-friendly order (cost larger than benefit)

Use shiftps and other packing/unpacking instructions.

Data address being loaded depends on data [14], can't be calculated (needs

to fetch entity ptr to load the associated mesh next)

112 bytes
2 fetches

Vector4
64 bytes

(halfExtent or min, radius in W)

Vector3
48 bytes

(halfExtent's center, or max)

Keep AABB & radius SoA. Even if there's
no SIMD. Cache locality is crucial to avoid
“data dependency on data” problem.
Probably all meshes' data fits in L2 cache!

http://developer.amd.com/wordpress/media/2012/10/AMD_GDC_2008_MW.pdf

Simplified render flow
renderOneFrame(

)

UpdateAllAnimations()

UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager

Render Queue
Sort

QuickCull() / HighLevelCull()

List of

culled

object

s

Past this point all objects
are READ ONLY

Batch creation
(materials,

draw calls, etc)

BATCH SUBMIT Draw to screen

Strea

m

Out

Is
stre
am
out?

Simplified render flow
renderOneFrame(

)
QuickCull() / HighLevelCull()

List of

culled

object

s
Scalability depends on

implementation & technique.

In charge of book keeping

SceneNode & Entities SoA's

cache locality.

Needs to keep objects

separated by RenderQueue

ID for fast selective rendering

List doesn't require any order;

except that all SceneNodes &

entities are contiguous in

memory.

Culling may be very inexact or

even non-existant.

Entities sharing the same

skeleton need to be adjacent.

Simplified render flow

UpdateAllAnimations()

UpdateAllTransforms()

List of

culled

object

s

Past this point all objects
are READ ONLY

Can update in parallel and SIMD fashion.

Needs to store world matrix of each bone in a scalar var.

to avoid pollution in the RenderQueue later

Updates the Scene hierarchy.

World matrix is created but is packed,

not yet scalar

Simplified render flow
UpdateAllTransforms()

Cull scene (split by
render queue layers)

List of

culled

object

s

Compositor Manager
Past this point all objects
are READ ONLY

Decides which passes can be done in

parallel and which ones have a dependency

on a previous pass (i.e. wants to reuse cull

list, Stream Out).
Performs frustum culling.

Also concatenates world matrix with view &

proj and produces scalar caches for the

RenderQueue.

The cache is obviously local to the thread

Simplified render flow

List of

culled

object

s

Render Queue
Sort

Past this point all objects
are READ ONLY

Batch creation
(materials, draw calls,

etc)

BATCH SUBMIT

Past this point the list of

objects is no longer SIMD-

ordered and thus all

operations must be scalar

The render queue has been

filtered in HighLevelCull.

However this RQ may still want

to reorder Renderables (i.e.

Early Z & Transparency)

This doesn't change much. Except now it

can be done in parallel as well as

dispatching draw call commands.

Furthermore, Stream Out isn't currently

supported in Ogre

What seems “wasteful” or inefficient
World view proj is concatenated before culling, causing unnecessary muls.

●Doing it after culling involves many 'if's or an additional level of indirection
●Culling aids the GPU, not the CPU (argueable).

●Worst-case scenario all or most objects pass the cull stage

→ Better stable framerate than jumpy one

●Tradeoff for SIMD, cache locality & Threading to overcome this.

→ ALU growth is the highest. An additional level of indirection would hurt us in the

future

Bone's scalar world Matrix is cached too early (again before culling).

●Same arguments above.

●This one may actually matter, due to the high number of bones multiplied by

instances, and this is a hotspot. Matrix4 scalar variable count may explode.

●The problem is that after culling, it is no longer SIMD.

●Play with the HighLevelCull settings.

Low-level cull methods
●None → Return list “as is” (i.e. CPU bound)

Low-level cull methods
●None → Return list “as is” (i.e. CPU bound)
●Simple camera frustum check (balance)

Low-level cull methods
●None → Return list “as is” (i.e. CPU bound)
●Simple camera frustum check (balance)
●Software occlusion culling (GPU bound)
●Very popular these days. Highly scalable & SIMD
●Basic idea: A software rasterizer that only
performs Depth-check and renders low-poly
bounding geometries to a low-res image.
●Objects that are totally occluded are rejected.
●Killzone* 3 [8], Frostbite* 2 [3]
●Coverage buffer variation in Cryengine* 3 [9]
Oth

http://www.guerrilla-games.com/presentations/Siggraph2011_MichalValient_OcclusionInKillzone3.pptx
http://www.crytek.com/cryengine/presentations/secrets-of-cryengine-3-graphics-technology

Software occlusion culling

Highly developed literature ([3], [8], [9])

Relatively easy & tempting to do.

Hard for artists to model good occlusions [8]

●It would be great to have tool-asisted modelling.

Mesh format needs upgrade to support custom meta-tags

●Occlusion geometry would be stored there.

●Custom meta-tags are very demanded by artists anyway

Other tips
Use unique ids instead of string names for reference and as key look up.

●See InstancedEntity::mId

Use static string more often, instead of bloated std::string (possibly UTF by the

way...)

●std::string & wstring are fine. The problem is that we use it everywhere.

●“A sprintf that isn't as ugly” by Tom Forsyth [15]

home.comcast.net/~tom_forsyth/blog.wiki.html

http://home.comcast.net/%7Etom_forsyth/blog.wiki.html

Other tips
Use unique ids instead of string names for reference and as key look up.

●See InstancedEntity::mId

Use static string more often, instead of bloated std::string (possibly UTF by the

way...)

●std::string & wstring are fine. The problem is that we use it everywhere.

●“A sprintf that isn't as ugly” by Tom Forsyth [15]

home.comcast.net/~tom_forsyth/blog.wiki.html

●The idea: Encapsulate sprintf into a class and use it like std::string

●No dynamic allocation (optional → grab from preallocated space)

●std::string like interface (i.e. Easy to read string concatenation)

●Type-safe

●Overflow-safe (i.e. it will refuse to scribble, and will assert in debug mode)

http://home.comcast.net/%7Etom_forsyth/blog.wiki.html

●Too many cache misses :(

●Inefficient Scene traversal & processing

●Fat, unflexible, vertex format

●Fixed functions vs programmable shaders

●“setFog”, etc

struct Vertex
{

float3 position; //12 bytes
float3 normal; //12 bytes
float3 tangent; //12 bytes
float2 uv0; //8

bytes
};

Total = 44 bytes
(Not counting blend indices & weights)

With normal map reflection data: 48 bytes
●Using 2 buffers for “old legacy DX8 HW”

Let's take a look at other engines...

struct Vertex
{

float16 position; //8 bytes, 2
unused

float16 uv0; //4
bytes

short4 Tangent; //8 bytes
};

Total = 20 bytes!!!
●Use 1 UV (vs 2 in Just Cause)

●Encodes normal, tang. & binorm.

●using QTangents in just 8 bytes

●(higher precision than Just Cause)

●Still 2 bytes unused...

CryENGINE* 3 [10]

struct Vertex
{

short4 position; //8 bytes, 2
unused

short4 uv0_uv1; //8 bytes
ubyte4 Tangents; //4 bytes
ubyte4 Color; //8 bytes

};

Total = 24 bytes!!!
●Uses 2 UVs!!

●Encodes normal, tangent & binormal

●data in just 4 bytes

●Has additional colour data

●for forest randomization

●Still 2 bytes unused...

Just Cause* 2 [11]

http://www.crytek.com/download/izfrey_siggraph2011.ppt
http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pptx

struct Vertex
{

float16 position; //8 bytes, 2
unused

float16 uv0; //4
bytes

short4 Tangent; //8 bytes
};

Total = 20 bytes!!!
●Use 1 UV (vs 2 in Just Cause)

●Encodes normal, tang. & binorm.

●using QTangents in just 8 bytes

●(higher precision than Just Cause)

●Still 2 bytes unused...

CryENGINE* 3 [10]

struct Vertex
{

short4 position; //8 bytes, 2
unused

short4 uv0_uv1; //8 bytes
ubyte4 Tangents; //4 bytes
ubyte4 Color; //8 bytes

};

Total = 24 bytes!!!
●Uses 2 UVs!!

●Encodes normal, tangent & binormal

●data in just 4 bytes

●Has additional colour data

●for forest randomization

●Still 2 bytes unused...

Just Cause* 2 [11]

Total = 48 bytes
OGRE

http://www.crytek.com/download/izfrey_siggraph2011.ppt
http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pptx

More data for half the size....

“Fat” vertices
Position: 16-bit is enough for local pos. Not so much for

absolute/world pos.

●Unless it's a very big mesh.

UVs: 16-bit is almost always good enough.

Normal encoding is relatively new

●QTangents (Crytek) are awesome.

●Angle-based (Avalanche) may be lossy, but it's small.

Blend weights: ubyte4 is often enough.

✗ Hard to escape from the automatic “DX8” re-layout.

Flexible data layout: Ideal
C:\> ogrexmlconverter file.mesh.xml out.mesh -l vertex.vlayout

struct Vertex : buffer[0]
{

POSITION : half4;
TEXCOORD3 : ubyte4;
TEXCOORD201 : short1, short2, short1;
NORMALS :

qtangent|angle|normalxyz, half3;
};

struct Vertex : buffer[1]
{

TANGENT : float4;
BINORMAL : half3;

};

Vertex.vlayout
Vertex.vlayout

would be a

simple text file

Flexible data layout: Ideal
C:\> ogrexmlconverter file.mesh.xml out.mesh -l vertex.vlayout

struct Vertex : buffer[0]
{

POSITION : half4;
TEXCOORD3 : ubyte4;
TEXCOORD201 : short1, short2, short1;
NORMALS :

qtangent|angle|normalxyz, half3;
};

struct Vertex : buffer[1]
{

TANGENT : float4;
BINORMAL : half3;

};

Vertex.vlayout

Create a position semantic on

source buffer 0, 4

components. 16-byte float

Declaration order IS

important

Flexible data layout: Ideal
C:\> ogrexmlconverter file.mesh.xml out.mesh -vl vertex.vlayout

struct Vertex : buffer[0]
{

POSITION : half4;
TEXCOORD3 : ubyte4;
TEXCOORD201 : short1, short2, short1;
NORMALS :

qtangent|angle|normalxyz, half3;
};

struct Vertex : buffer[1]
{

TANGENT : float4;
BINORMAL : half3;

};

Vertex.vlayout

Take TEXCOORD3 of the xml

file, convert it to four ubyte

It will now become texcoord

#0 in the output because it's

the first one to be declared

If texcoord had less than 4

components, warn and fill

with zeroes. Warn also about

possible truncation.

Flexible data layout: Ideal
C:\> ogrexmlconverter file.mesh.xml out.mesh -vl vertex.vlayout

struct Vertex : buffer[0]
{

POSITION : half4;
TEXCOORD3 : ubyte4;
TEXCOORD201 : short1, short2, short1;
NORMALS :

qtangent|angle|normalxyz, half3;
};

struct Vertex : buffer[1]
{

TANGENT : float4;
BINORMAL : half3;

};

Vertex.vlayout Take first value of TexCoord 2

and fill into X; the first two

values of T.C. 0 to fill into YZ,

& the first value of T.C. 1 to

put into W.

The merge will output

TexCoord 1 xyzw, short4.

Error if TC 0 had less than 2

outputs

The output must contain all

the same base type (obvious)

Merging is very useful for freeing up vertex semantics.

Makes handling shader permutations easier. Some

GPUs aren't scalar and might boost perf.

Flexible data layout: Ideal
C:\> ogrexmlconverter file.mesh.xml out.mesh -vl vertex.vlayout

struct Vertex : buffer[0]
{

POSITION : half4;
TEXCOORD3 : ubyte4;
TEXCOORD201 : short1, short2, short1;
NORMALS :

qtangent|angle|normalxyz, half;
};

struct Vertex : buffer[1]
{

TANGENT : float4;
BINORMAL : half3;

};

Vertex.vlayout
Store normal data, and

choose compression scheme.

Last parameter (half) can be

ignored for compressed

schemes.

Can only specify base type,

Element count is ignored i.e.

'float' & 'short' are the same

as 'float3' or 'short4'

respectively.

Flexible data layout: Ideal
C:\> ogrexmlconverter file.mesh.xml out.mesh -vl vertex.vlayout

struct Vertex : buffer[0]
{

POSITION : half4;
TEXCOORD3 : ubyte4;
TEXCOORD201 : short1, short2, short1;
NORMALS :

qtangent|angle|normalxyz, half;
};

struct Vertex : buffer[1]
{

TANGENT : float4;
BINORMAL : half3;

};

Vertex.vlayout
Source buffer 1

If uses 4 components (i.e.

float4) stores binormal parity

in W. Else always assume 3

components (warn if not 3 or

4)

Always set to 3 components.

Warn if not so (and set to 3)

Flexible data layout

●Allows very thorough optimization
●Provide a group of presets for each platform
●Shorts are faster than halfs in consoles
●No need for artist intervention
●Write layout once, use it for every asset

Rendering huge environments
(so far 3 titles I've worked on)

What's wrong with this shader? (1)
uniform float3x4 viewProj;
uniform float3x4 worldMat3x4[NUM_MAT3X4]; //world_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(worldMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(viewProj, vPos);
//...

What's wrong with this shader? (1)
uniform float3x4 viewProj;
uniform float3x4 worldMat3x4[NUM_MAT3X4]; //world_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(worldMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(viewProj, vPos);
//...

Suppose the camera is at (6000, 6000, 6000), object is visible and close to the camera

What's wrong with this shader? (1)
uniform float3x4 viewProj;
uniform float3x4 worldMat3x4[NUM_MAT3X4]; //world_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(worldMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(viewProj, vPos);
//...

Suppose the camera is at (6000, 6000, 6000), object is visible and close to the camera

.41 = 6010 .42 = 6005 .43 = 6005

X = 6018 Y = 6015 Z = 6004

What's wrong with this shader? (1)
uniform float3x4 viewProj;
uniform float3x4 worldMat3x4[NUM_MAT3X4]; //world_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(worldMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(viewProj, vPos);
//...

Suppose the camera is at (6000, 6000, 6000), object is visible and close to the camera

.41 = 6010 .42 = 6005 .43 = 6005

X = 6018 Y = 6015 Z = 6004

These are all very large values:
Precision SUCKS.

✗Jitterin

g

✗Shakin

Hard to see in a still frame. See it in

motion. Polygons shake like in

Playstation* 1 titles (which used fixed

point numbers). It's 1996 again

My eye is popping out!

It's much worse

in motion

What's wrong with this shader? (1)

✔SceneManager::setCameraRelativeRendering is a very good paliative

✗Adds an 'if' on every rendered object → luckily predicts very well.

✗Some artifacts still present when far away.

What's wrong with this shader? (1)
SOLUTION:

uniform float3x4 worldViewProj;
uniform float3x4 localMat3x4[NUM_MAT3X4]; //local_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(localMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(worldViewProj, vPos);
//...

What's wrong with this shader? (1)
SOLUTION:

uniform float3x4 worldViewProj;
uniform float3x4 localMat3x4[NUM_MAT3X4]; //local_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(localMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(worldViewProj, vPos);
//...

●Idea is to work the animation in local space, then transform by wvp

✔Performance: Saves concatenating the world matrix against each bone

✔Numbers are always small. Precision win!

●Doesn't work for lighting calculations?

What's wrong with this shader? (1)
SOLUTION:

uniform float3x4 worldViewProj;
uniform float3x4 localMat3x4[NUM_MAT3X4]; //local_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(localMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(worldViewProj, vPos);
//...

●Idea is to work the animation in local space, then transform by wvp

✔Performance: Saves concatenating the world matrix against each bone

✔Numbers are always small. Precision win!

●Doesn't work for lighting calculations?

●Work in view space!

●Pass camera_matrix_array_3x4 → Animation in view space.

●Then multiply by Projection matrix instead of wvp.

●Doesn't save performance, but precision stays accurate :)

See Creating Vast Game Worlds (Emil Persson) [11] for more precision tips

●Always construct inverse wvp matrices by doing the opposite calculations

http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pptx

What's wrong with this shader? (2)
uniform float3x4 viewProj;
uniform float3x4 worldMat3x4[NUM_MAT3X4]; //world_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(worldMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(viewProj, vPos);
//...

What's wrong with this shader? (2)
uniform float3x4 viewProj;
uniform float3x4 worldMat3x4[NUM_MAT3X4]; //world_matrix_array_3x4
//Skeletally animated object
int idx = input.blendIdx;
float4 vPos = float4(mul(worldMat3x4[idx], input.pos).xyz, 1.0f) * blendWght;
outPos = mul(viewProj, vPos);
//...

Shader constant waterfalling!!! :(

The higher the vertex count & indexing divergences of adjacent

vertices, the slower the shader will run.[12]

When NUM_MAT3x4 is very high (>25), it can be a real bottleneck

Parallel operations running on the same shader unit with deverging

indices must be serialized. It's fine if they all access the same entries

(i e during lighting calculations in forward rendering)

HW Skinning through constant registers was the only way for VS 1.1

& 2.0

●DX10/11: Texture buffers to the rescue.

●DX9: Vertex Texture Fetch works like a charm on DX10 capable

devices.

●Current Ogre's HW VTF Instancing implementation proves it! We

already do this! (guess who wrote it...)

HW Skinning through constant registers was the only way for VS 1.1

& 2.0

●DX10/11: Texture buffers to the rescue.

●DX9: Vertex Texture Fetch works like a charm on DX10 capable

devices.

●Current Ogre's HW VTF Instancing implementation proves it! We

already do this! (guess who wrote it...)

No more 85-bone limit! → More bones can be crazy for games, but

enables non-gaming applications (i.e. Cinematic tools).

Use similar system (VTF/Texture buffers) for morph targets!

✔Would make it straightforward to integrate to shader.

●Maximum of 4-24 active morph targets/blend shapes is stone age!!!

(24 uses insane amount of bandwidth)

Almost nobody ends up using it

Medusa demo

Yeah..... 4 blend shapes....

Medusa demo, Copyright © NVIDIA 2009

Thanks to envydream.blogspot.com for taking the screenshot

What's wrong with this shader? (2)
SOLUTION:

uniform float3x4 worldViewProj;
uniform texture2D localMat3x4Tex; //Can be 1D & save 1 interpolator
//Skeletally animated object
int idx = input.blendIdx;
float3x4 mat3x4;
mat3x4[0] = tex2Dlod(localMat3x4Tex, (input.m03.xy).xyyy);
mat3x4[1] = tex2Dlod(localMat3x4Tex, (input.m03.xy + float2(1.0f / texWidth, 0)).xyyy);
mat3x4[2] = tex2Dlod(localMat3x4Tex, (input.m03.xy + float2(2.0f / texWidth, 0)).xyyy);
float4 vPos = float4(mul(mat3x4, input.pos).xyz, 1.0f) * blendWght;
outPos = mul(worldViewProj, vPos);
//...

What's wrong with this shader? (2)
SOLUTION:

uniform float3x4 worldViewProj;
uniform texture2D localMat3x4Tex; //Can be 1D & save 1 interpolator
//Skeletally animated object
int idx = input.blendIdx;
float3x4 mat3x4;
mat3x4[0] = tex2Dlod(localMat3x4Tex, (input.m03.xy).xyyy);
mat3x4[1] = tex2Dlod(localMat3x4Tex, (input.m03.xy + float2(1.0f / texWidth, 0)).xyyy);
mat3x4[2] = tex2Dlod(localMat3x4Tex, (input.m03.xy + float2(2.0f / texWidth, 0)).xyyy);
float4 vPos = float4(mul(mat3x4, input.pos).xyz, 1.0f) * blendWght;
outPos = mul(worldViewProj, vPos);
//...

On +G80 & HD 2000 HW texture cache works great

DX10/11 & GL would use a different code path (no need for

texWidth/invTexWidth with tbuffers)

Any other SM 3.0 GPU that could run this would be G60 & G70 but... SLOOOW

●Too many cache misses :(

●Inefficient Scene traversal & processing

●Fat, unflexible, vertex format

●Fixed functions vs programmable shaders

●“setFog”, etc

Fixed function
Begginers are often confused: Using “setFog & setSpecular” works. Then they decide to

used shaders. And everything stops working all of a sudden.

Fixed function
Begginers are often confused: Using “setFog & setSpecular” works. Then they decide to

used shaders. And everything stops working all of a sudden.

● Move all functionality FF to “states” → Similar to D3D10 state concepts.

●The idea → move functionality out of the SceneManager (& possibly from some

materials)

Fixed function
Begginers are often confused: Using “setFog & setSpecular” works. Then they decide to

used shaders. And everything stops working all of a sudden.

● Move all functionality FF to “states” → Similar to D3D10 state concepts.

●The idea → move functionality out of the SceneManager (& possibly from some

materials)

●The developer would create a couple of states, and apply them

●Easier to manage redundant state changes

●Allows FF emulation & cache through RRTS or similar

●Works on platform where FF is the norm

●Completely optional

● RTSS could evolve into something more node-like. Artists love tweaking UI nodes

(specially UDK*'s node system).

Managing shaders
RTSS: Works out of the box FF emulation. That's it's original purpose.

New possible goals:

●Manage shader permutations → Assign chunks of custom shader code

as nodes.

●Each node has named inputs and outputs to be passed as function

parameters

●Example: Keep vertex transform & shadow code, but swap BDRFs.

●Example: Keep everything, but use instancing's transformation code

(one weight).

●Very similar to how it already works, but allowing custom shader code.

●Visual editor to set up the nodes (WYSIWYG)

Embracing DirectX 11 & OGL 4.3

“Everything that can be done with D3D11 can be
done in D3D9”

(This is usually believing D3D11 is like 9 with tesselation)

Tesselation?

New compression formats?

HDR in compute shaders?

MSAA custom resolves?

Depth

textures?

MRT with MSAA?

More MRT targets?

Texture buffers?

Tesselation?

New compression formats?

HDR in compute shaders?

MSAA custom resolves?

Depth

textures?

MRT with MSAA?

More MRT targets?

Texture buffers? Naahh......

What's hot in D3D11? (aka. You can't do these in D3D9)

Light indexed deferred & Cluster forward shading [19] → Needs atomics and UAVs

●AMD's Leo Demo.

●MJP's [17] Demo

●See also Deferred Rendering for Current and Future Rendering Pipelines [18]

AMD's Leo demo

MJP's demo

http://www.cse.chalmers.se/%7Eolaolss/main_frame.php?contents=publication&id=clustered_shading
http://developer.amd.com/resources/documentation-articles/samples-demos/gpu-demos/amd-radeon-hd-7900-series-graphics-real-time-demos/
http://mynameismjp.wordpress.com/2012/03/31/light-indexed-deferred-rendering/
http://software.intel.com/en-us/articles/deferred-rendering-for-current-and-future-rendering-pipelines/

What's hot in D3D11? (aka. You can't do these in D3D9)

Voxel based Real time Global Illumination → Needs compute shaders

●CryEngine 3 [20] & UDK 4 [21] already do this

●See also Cascaded Light Propagation Volumes for Indirect Illumination [22]

●NVIDIA's Voxel cone tracing & Sparse Voxel Octree [23]. → Not fully real time. Needs a

preprocessing step. But has it's niche and it's multi-bounce.

NVIDIA's Voxel cone tracing demo

UDK 4's Elemental demo

http://www.crytek.com/cryengine/presentations/real-time-diffuse-global-illumination-in-cryengine-3
http://www.unrealengine.com/files/misc/The_Technology_Behind_the_Elemental_Demo_16x9_(2).pdf
http://www.crytek.com/cryengine/cryengine3/presentations/cascaded-light-propagation-volumes-for-real-time-indirect-illumination
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB134-Voxel-Cone-Tracing-Octree-Real-Time-Illumination.pdf

What's hot in D3D11? (& GL 4.3)
Light indexed deferred & Cluster forward shading
●It's actually forward rendering, but works like deferred.

●Moving the tile creation to the CPU, it is doable on D3D10 level hardware

✔Many lights

✔MSAA compatible

✔Alpha blending compatible

✔Faster than deferred shading

✔Multiple materials/BDRFs

Real time Global Illumination
●Do I need to say more?
●UDK & CryEngine's approach requires artist's tweaking of which objects are

occluders for optimal results. Small objects are removed from the calculations.

What's hot in D3D11? (& GL 4.3)

I'm no fortune teller but

this looks like the future

in 2 years

Light indexed deferred & Cluster forward shading
●It's actually forward rendering, but works like deferred.

●Moving the tile creation to the CPU, it is doable on D3D10 level hardware

✔Many lights

✔MSAA compatible

✔Alpha blending compatible

✔Faster than deferred shading

✔Multiple materials/BDRFs

Real time Global Illumination
●Do I need to say more?
●UDK & CryEngine's approach requires artist's tweaking of which objects are

occluders for optimal results. Small objects are removed from the calculations.

What's hot in D3D11? (& GL 4.3)
UAVs & atomic counters are awesome.

Ultra fast Bokeh depth of field (4th technique being described) [24] is an example of

other possible uses. Sprite-based compositing (i.e. Lens flares & Bokeh DoF) is now

possible.

All the other features (depth textures, custom AA resolves, texture arrays, etc) are

nice bonus, but nothing that can't really be done in D3D9 or that brings a lot of quality

difference.

http://mynameismjp.wordpress.com/2011/02/28/bokeh/

BONUS SLIDES!

Data Oriented Design (DOD) vs
Object Oriented Design (OOD)

OOD is well known. DOD is about coding around data, and cache efficiency

Most common example is virtual
●Wide spread OOD pattern all over OGRE → Good. But overused

Data Oriented Design (DOD) vs
Object Oriented Design (OOD)

OOD is well known. DOD is about coding around data, and cache efficiency

Most common example is virtual
●Wide spread OOD pattern all over OGRE → Good. But overused

virtual const Vector3& SceneNode::getPosition();

virtual SceneNode::setPosition(const Vector3 &newPos);

Do we really need these to be virtual?

OOD vs DOD
But it's flexible! Allowing derived types to modify their behavior!

●Yeah, and really slow.

●But there's a lot of possible usages. This is open source!

●What do other (licensable) engines do???

●Pay for source code → Modify source code

●No virtual in commonly called functions.

OOD vs DOD
But it's flexible! Allowing derived types to modify their behavior!

●Yeah, and really slow.

●But there's a lot of possible usages. This is open source!

●What do other (licensable) engines do???

●Pay for source code → Modify source code

●No virtual in commonly called functions.

Open Source is the same, except for the pay for source code part[*] :)

Flexibility through modification, not virtual overloading

→ But can this get annoying?

[*] Ok, Stallman won't agree. Yes, yes, we know. Open source is about freedom

OOD vs DOD
YES! It can get annoying!
SOLUTION: Flexibility levels!

#if OGRE_FLEXIBILITY_LEVEL >= 0

#define virtual_l0 virtual

#else

#define virtual_l0

#endif

#if OGRE_FLEXIBILITY_LEVEL >= 1

#define virtual_l1 virtual

#endif

//(...) Up to level 2 probably

virtual_l2 const Vector3& SceneNode::getPosition(); //Less likely to be overloaded

virtual_l1 SceneNode::setPosition(const Vector3&); //More likely to be overloaded

OOD vs DOD: Flexibility levels
●Get best of both worlds: Let the users decide how they modify the code.

●If they want to overload, let them overload

●Higher level for less overloaded functions or highly called ones.

●Breaks ABI compatibility though.

●OgreMain.dll built with different flexibility levels can't be mixed.

●We can't mix builds w/ & w/out Boost anyway....

●Default shipping DLL: OGRE_FLEXIBILITY_LEVEL = -1 (disabled)

●Still use 'virtual' for functions that are internally (by design) virtual

●Examples: InstanceBatch techniques. Particle systems.

●Try to use DOD for those when possible (see next slide)

OOD vs DOD
OOD approach:

virtual FooClass::foo() { /* work on FooClass 'this' */ }

for(size_t x=0; i<count; ++i)

object[i]->foo();

OOD vs DOD
OOD approach:

virtual FooClass::foo() { /* work on FooClass 'this' */ }

for(size_t x=0; i<count; ++i)

object[i]->foo();

DOD approach:
//Static like behavior

virtual FooClass::foo(FooClass **fooInstancesInOut, size_t count) const

{

for(size_t x=0; i<count; ++i)

/* work on 'fooInstancesInOut[i]' */

}

objectMgr->foo(objects, count);

OOD vs DOD
OOD approach:

virtual FooClass::foo() { /* work on FooClass 'this' */ }

for(size_t x=0; i<count; ++i)

object[i]->foo();

DOD approach:
//Static like behavior

virtual FooClass::foo(FooClass **fooInstancesInOut, size_t count) const

{

for(size_t x=0; i<count; ++i)

/* work on 'fooInstancesInOut[i]' */

}

objectMgr->foo(objects, count);
Virtual vtable is evaluated once!

OOD vs DOD
●OOD virtuals in x86/x64 are cheap (thanks to branch predictors & OoOE)

●Not so much in all the other target architectures

●Branch predictors are expensive & consume a lot of power.

●Don't hope they'll appear in mobile anytime soon.

●Same with Out of Order Execution (OoOE)

OOD & DOD... 'vs'?
DOD is about data layout & access patterns.
OOD is about coding style & relationship between constructs called 'objects'.

In theory DOD & OOD aren't contradictory at all. OOD is just easier for

humans to understand & visualize.

But unfortunately C++ mixes both concepts together.

●There's no way to specify a different data layout other than variable's declaration

order.

●There's no way to let the compiler know or hint we want our OOD-looking code

full of virtuals to translate into DOD-friendly assembly code with little virtuals

....may be in some distant future

64-bit readiness

It's about time we start thinking in default 64-bit builds

●Extra 8 xmm registers may come in handy

Portability issues? Pointer truncation bugs?

●Bruce Dawson [13] (Valve) to the rescue!

●http://randomascii.wordpress.com/2012/02/14/64-bit-made-easy/

64-bit readiness

It's about time we start thinking in default 64-bit builds

●Extra 8 xmm registers may come in handy

Portability issues? Pointer truncation bugs?

●Bruce Dawson [13] (Valve) to the rescue!

●http://randomascii.wordpress.com/2012/02/14/64-bit-made-easy/

Basic idea
●At start-up allocate large space of virtual addreses, but small chunks of memory

●Overhead is very low

●Exhaust the first 4 GB address-range. All in-engine allocations must now use 64-bit

●Pointer truncation and similar problems will cause crashes in no time!

●Beware of the side effects (i.e. App Verifier) described in the site.

●Even more 64-bit info:http://software.intel.com/en-us/blogs/2011/07/07/all-about-64-bit-

programming-in-one-place/

http://software.intel.com/en-us/blogs/2011/07/07/all-about-64-bit-programming-in-one-place/

void ReserveBottomMemory()
{
#ifdef _WIN64

static bool s_initialized = false;
if (s_initialized)

return;
s_initialized = true;

// Start by reserving large blocks of address space, and then
// gradually reduce the size in order to capture all of the
// fragments. Technically we should continue down to 64 KB but
// stopping at 1 MB is sufficient to keep most allocators out.

const size_t LOW_MEM_LINE = 0x100000000LL;
size_t totalReservation = 0;
size_t numVAllocs = 0;
size_t numHeapAllocs = 0;
size_t oneMB = 1024 * 1024;
for (size_t size = 256 * oneMB; size >= oneMB; size /= 2)
{

for (;;)
{

void* p = VirtualAlloc(0, size, MEM_RESERVE, PAGE_NOACCESS);
if (!p)

break;

if ((size_t)p >= LOW_MEM_LINE)
{

// We don't need this memory, so release it completely.
VirtualFree(p, 0, MEM_RELEASE);
break;

}

totalReservation += size;
++numVAllocs;

}
}

// Now repeat the same process but making heap allocations, to use up
// the already reserved heap blocks that are below the 4 GB line.

HANDLE heap = GetProcessHeap();
for (size_t blockSize = 64 * 1024; blockSize >= 16; blockSize /= 2)
{

for (;;)
{

void* p = HeapAlloc(heap, 0, blockSize);
if (!p)

break;

if ((size_t)p >= LOW_MEM_LINE)
{

// We don't need this memory, so release it completely.
HeapFree(heap, 0, p);
break;

}

totalReservation += blockSize;
++numHeapAllocs;

}
}

// Perversely enough the CRT doesn't use the process heap. Suck up
// the memory the CRT heap has already reserved.
for (size_t blockSize = 64 * 1024; blockSize >= 16; blockSize /= 2)
{

for (;;)
{

void* p = malloc(blockSize);
if (!p)

break;

if ((size_t)p >= LOW_MEM_LINE)
{

// We don't need this memory, so release it completely.
free(p);
break;

}

totalReservation += blockSize;
++numHeapAllocs;

}
}

// Print diagnostics showing how many allocations we had to make in
// order to reserve all of low memory, typically less than 200.
char buffer[1000];
sprintf_s(buffer, "Reserved %1.3f MB (%d vallocs,"

"%d heap allocs) of low-memory.\n",
totalReservation / (1024 * 1024.0),
(int)numVAllocs, (int)numHeapAllocs);

OutputDebugStringA(buffer);
#endif
}

Unmodified code. Thanks to Bruce Dawson!, reproduced with permission

●http://randomascii.wordpress.com/2012/02/14/64-bit-made-easy/

Call ReserveBottomMemory right at start up of the process!

Legal

* All trademarks and registered trademarks
mentioned in this document are the property of
their respective owners.

Matías Nazareth Goldberg
@matiasgoldberg

https://twitter.com/matiasgoldberg

References
[1] CPU Caches and Why You Care, Scott Meyers, Ph.D.; ACCU 2011 Conference.
http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

[2] Typical C++ Bullshit, Mike Acton. http://macton.posterous.com/roundup-recent-sketches-on-
concurrency-data-d#

[3] Culling the Battlefield, Daniel Colling (DICE), GDC 2011.
http://publications.dice.se/attachments/CullingTheBattlefield.pdf

[4] Pitfalls of Object Oriented Programming, Tony Albrecht (SCEE), GCAP 09
http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programmin
g_GCAP_09.pdf

[5] “Down With fcmp: Conditional Moves For Branchless Math”, Elan Rusky (Valve)
http://assemblyrequired.crashworks.org/2009/01/04/fcmp-conditional-moves-for-branchless-math/

[6] Understanding the Second-Generation of Behavior Trees, Alex J. Champandard, 2012,
#AltDevConf http://aigamedev.com/insider/tutorial/second-generation-bt/

[7] Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-
optimization-manual.html

[8] Practical Occlusion Culling in Killzone 3, Michael Valient, SIGGRAPH 2011 http://www.guerrilla-
games.com/presentations/Siggraph2011_MichalValient_OcclusionInKillzone3.pptx

[9] Secrets of CryENGINE 3 Graphics Technology, Kasyan – Schulz – Sousa, SIGGRAPH 2011

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://macton.posterous.com/roundup-recent-sketches-on-concurrency-data-d
http://publications.dice.se/attachments/CullingTheBattlefield.pdf
http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://assemblyrequired.crashworks.org/2009/01/04/fcmp-conditional-moves-for-branchless-math/
http://aigamedev.com/insider/tutorial/second-generation-bt/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.guerrilla-games.com/presentations/Siggraph2011_MichalValient_OcclusionInKillzone3.pptx

References
[10] Spherical Skinning with Dual-Quaternions and QTangents, Ivo Zoltan Frey, SIGRAPH 2011
Vancounver. http://www.crytek.com/download/izfrey_siggraph2011.ppt

[11] Creating Vast Game Worlds, Emil Persson, SIGGRAPH 2012
http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pptx

[12] Seven Ways to Skin a Mesh: Character Skinning Revisited for Modern GPUs, Matt Lee,
Gamefest Unplugged (Europe) 2007

[13] 64-Bit made easy, Bruce Dawson, 2012 http://randomascii.wordpress.com/2012/02/14/64-bit-
made-easy/

[14] Multi-core is Here! But How Do You Resolve Data Bottlenecks in PC Games?, Michael Wall
(AMD), GDC 2008 http://developer.amd.com/wordpress/media/2012/10/AMD_GDC_2008_MW.pdf

[15] A sprintf that isn't as ugly, by Tom Forsyth, 2011, home.comcast.net/~tom_forsyth/blog.wiki.html

[16] Sparse-world storage formats, by Tom Forsyth, 2012,
home.comcast.net/~tom_forsyth/blog.wiki.html

[17] Light Indexed Deferred Rendering, Matt Pettineo, 2012
http://mynameismjp.wordpress.com/2012/03/31/light-indexed-deferred-rendering/

[18] Deferred Rendering for Current and Future Rendering Pipelines, Andrew Lauritzen, SIGGRAPH
2010 http://software.intel.com/en-us/articles/deferred-rendering-for-current-and-future-rendering-
pipelines/

http://www.crytek.com/download/izfrey_siggraph2011.ppt
http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pptx
http://randomascii.wordpress.com/2012/02/14/64-bit-made-easy/
http://developer.amd.com/wordpress/media/2012/10/AMD_GDC_2008_MW.pdf
http://home.comcast.net/%7Etom_forsyth/blog.wiki.html
http://home.comcast.net/%7Etom_forsyth/blog.wiki.html
http://mynameismjp.wordpress.com/2012/03/31/light-indexed-deferred-rendering/
http://software.intel.com/en-us/articles/deferred-rendering-for-current-and-future-rendering-pipelines/

References
[19] Clustered Deferred and Forward Shading, Olsson, Billeter, Assarsson, 2012
http://www.cse.chalmers.se/~olaolss/main_frame.php?contents=publication&id=clustered_shading

[20] Real-time Diffuse Global Illumination in CryENGINE 3, Kaplanyan. SIGGRAPH 2010
http://www.crytek.com/cryengine/presentations/real-time-diffuse-global-illumination-in-cryengine-3

[21] The Technology Behind the “Unreal Engine 4 Elemental demo”, Martin Mittring, SIGGRAPH
2012
http://www.unrealengine.com/files/misc/The_Technology_Behind_the_Elemental_Demo_16x9_(2).pd
f

[22] Cascaded Light Propagation Volumes for Indirect Illumination, Kaplanyan & Dachsbacher,
SIGGRAPH 2010 http://www.crytek.com/cryengine/cryengine3/presentations/cascaded-light-
propagation-volumes-for-real-time-indirect-illumination

[23] Voxel Cone Tracing and Sparse Voxel Octree for Real-time Global Illumination, Cyril Crassin,
2012 http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB134-Voxel-
Cone-Tracing-Octree-Real-Time-Illumination.pdf

[24] How To Fake Bokeh (And Make It Look Pretty Good), Matt Pettineo, 2012,
http://mynameismjp.wordpress.com/2011/02/28/bokeh/

http://www.cse.chalmers.se/%7Eolaolss/main_frame.php?contents=publication&id=clustered_shading
http://www.crytek.com/cryengine/presentations/real-time-diffuse-global-illumination-in-cryengine-3
http://www.unrealengine.com/files/misc/The_Technology_Behind_the_Elemental_Demo_16x9_(2).pdf
http://www.crytek.com/cryengine/cryengine3/presentations/cascaded-light-propagation-volumes-for-real-time-indirect-illumination
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB134-Voxel-Cone-Tracing-Octree-Real-Time-Illumination.pdf
http://mynameismjp.wordpress.com/2011/02/28/bokeh/

	Slide Number 1
	Pitfalls
	Slide Number 3
	Cache misses
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Cache misses, cache misses everywhere...
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Pipeline stalls
	Pipeline stalls – conditional moves
	Conditional moves with SSE2
	Conditional moves with SSE2
	Conditional moves with SSE2
	Conditional moves with SSE2
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Distant Souls (Ogre)
	Distant Souls (Ogre)
	Assassin's Creed* 2 (Ubisoft*)
	Assassin's Creed* 2 (Ubisoft*)
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Poor data updates
	Poor data updates
	Poor data updates
	Slide Number 35
	Typical Ogre render flow
	Typical Ogre render flow
	Typical Ogre render flow
	Typical Ogre render flow
	Typical Ogre render flow
	Typical Ogre render flow
	Typical Ogre render flow
	Typical Ogre render flow
	Whats wrong with this script?
	Whats wrong with this script?
	Whats wrong with this script?
	Whats wrong with this script?
	Ideal/proposed render flow
	Ideal/proposed render flow
	Ideal/proposed render flow
	Ideal/proposed render flow
	Ideal/proposed render flow
	Ideal/proposed render flow
	Ideal/proposed render flow
	Slide Number 56
	Proposed render flow
	Proposed render flow
	Proposed: HighLevelCull()
	Proposed: HighLevelCull()
	Grids within Grids
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Proposed: UpdateAllAnimations
	Proposed: UpdateAllTransforms()
	Proposed: UpdateAllTransforms()
	Proposed: UpdateAllTransforms()
	Proposed: UpdateAllTransforms()
	Proposed: UpdateAllTransforms()
	Proposed: UpdateAllTransforms()
	Proposed: UpdateAllTransforms()
	SoA in SceneNodes
	SoA in SceneNodes
	SoA in SceneNodes
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	SoA data layout
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 98
	Simplified render flow
	Simplified render flow
	Simplified render flow
	Simplified render flow
	Simplified render flow
	What seems “wasteful” or inefficient
	Low-level cull methods
	Low-level cull methods
	Low-level cull methods
	Software occlusion culling
	Other tips
	Other tips
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	“Fat” vertices
	Flexible data layout: Ideal
	Flexible data layout: Ideal
	Flexible data layout: Ideal
	Flexible data layout: Ideal
	Flexible data layout: Ideal
	Flexible data layout: Ideal
	Flexible data layout
	Slide Number 126
	What's wrong with this shader? (1)
	What's wrong with this shader? (1)
	What's wrong with this shader? (1)
	What's wrong with this shader? (1)
	My eye is popping out!
	What's wrong with this shader? (1)
	What's wrong with this shader? (1)�SOLUTION:
	What's wrong with this shader? (1)�SOLUTION:
	What's wrong with this shader? (1)�SOLUTION:
	What's wrong with this shader? (2)
	What's wrong with this shader? (2)
	Slide Number 138
	Slide Number 139
	Medusa demo
	What's wrong with this shader? (2)�SOLUTION:
	What's wrong with this shader? (2)�SOLUTION:
	Slide Number 143
	Fixed function
	Fixed function
	Fixed function
	Managing shaders
	Embracing DirectX 11 & OGL 4.3
	Slide Number 149
	Slide Number 150
	What's hot in D3D11? (aka. You can't do these in D3D9)
	What's hot in D3D11? (aka. You can't do these in D3D9)
	What's hot in D3D11? (& GL 4.3)
	What's hot in D3D11? (& GL 4.3)
	What's hot in D3D11? (& GL 4.3)
	Slide Number 156
	Data Oriented Design (DOD) vs Object Oriented Design (OOD)
	Data Oriented Design (DOD) vs Object Oriented Design (OOD)
	OOD vs DOD
	OOD vs DOD
	OOD vs DOD
	OOD vs DOD: Flexibility levels
	OOD vs DOD
	OOD vs DOD
	OOD vs DOD
	OOD vs DOD
	OOD & DOD... 'vs'?
	64-bit readiness
	64-bit readiness
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Legal
	Slide Number 174
	References
	References
	References

