CS 136 Fall 2008
Mark Giesbrecht

Assignment 4
Due Sunday, October 26, 2008 at 4pm.

All coding questions are to be implemented in the C language. The prototypes of all
functions which are required in the questions should be stored in an appropriately named .h file,
which you should #include into your .c file of solutions, and into your .c file of drivers.

Questions with non-programming answers should be neatly written and deposited into the
(CS136 assignment box outside of MC4065. Please use a cover sheet. The answers do not need to
be typeset.

For each question, we will assume you have added the lines

#include <stdio.h>
#include <stdbool.h>

1. Arithmetic modulo a prime p is at the heart of much of modern cryptography. In this question
you will implement some basic functions for working in Z,. In this assignment we will assume
that 0 < p < 2% which will avoid numerical overflows in what follows.

(a)

Write a function with prototype bool isprime(int p); which returns true if p is
prime, and false otherwise. Do this by trial division: divide by all numbers such that
if p is not prime, then one of these divisions must have no remainder. Be clever about
it; don’t do more divisions than you have to!

For parts (b) through (e) assume that p is prime.

(b)

Write functions

e int addp(int a, int b, int p); w(a+ b)remp.

e int subp(int a, int b, int p); = (a —b)remp.

e int mulp(int a, int b, int p); = (a*b)remp.
Write the function int powp(int a, int e, int p). Your function should produce
a® mod p. Use the repeated-squaring method described in tutorial. Your function should
work when e is both positive and negative (see the 1d below).
Write the function int invp(int a, int p); = (1/a)remp.
Hint: you may use “Fermat’s Little Theorem” which says a?~! rem p = 1 for all @ # 0 mod
p.
The discrete logarithm of a with respect to “base” b modulo p is the smallest £ > 0 such
that b* = @ mod p. Write a function with prototype int dlogp(int a, int b, int p);

which returns the discrete logarithm of a with respect to base b modulo p. If no such k
exists, then return 0.

Place all your functions in a file called adql-modp.c and all the headers in a4qi-modp.h. You
should also provide a file adql-modp-driver.c which contains a main function and provides
appropriate tests through assertions.



2. We saw in class how to read an int from standard input using scanf. In fact, scanf also
returns an int, which returns the number of data items read, or the special value EOF when
the end of file is reached. Write a function sumThree, with prototype

int sumThree () ;

which reads ints from standard input until the end of file. It then returns the sum of the
largest three numbers in the file.

Place your function sumThree in a file called a4q2-sumThree.c, and a header with the proto-
type for sumThree in a4dq2-sumThree.h. Also provide a file a4q2-sumThree-driver.c with
a main function which provides appropriate tests.

3. Using the definition of O-notation, prove the following;:
(a) 3n? +nlogn is O(n?).
(b) 30000n2 is O(n?logn).
(c) (n? —n)?is not O(n?).
(d) nlogyn is not O(n).

You may use, without proof, the fact that 1 < logy(n) < n for n > 3. Remember to use the
formal definition of O-notion.

4. An interesting sequence is defined as Jo =1, J; = 2 and J; = 2J;_9 — J;_1 for ¢ > 2. The
first few numbers in the sequence are 1,2,0,4, —4,12,—20,44, —84, . ..

(a) Consider the following simple Scheme algorithm to compute J,, =(seq n):

(define (seq n)
(cond [(= n 0) 1]
[(=n1)2]
[else (— (2 (seq (= n 2))) (seq (— n 1)))]))

Let T'(n) be the total number of multiplications used by the preceding algorithm to
compute (seq n). Prove by induction on n that

T(n)>6""1 -1

where § = (1 4+ v/5)/2 (the so called “golden ratio”).

(b) Describe an algorithm which computes J,, with cost O(n). Indicate why it has the cost
O(n). Do not use the formula from part (c) below. You should give the algorithm in
Scheme or C, but you do not need to implement it.

(c) Prove that J, =4/3 — (—2)"/3 by induction on n.

5. In CS 135 (and in a CS 136 tutorial) you saw how to compute a® mod n for positive integers a,
e and n using two different methods. This is an important computation in many cryptography
Systems.

The first method simply multiplied repeatedly:
(define (mod-expl a e n)



(cond
[(zero? e) 1]
[else (modulo (x (mod-expl a (subl e) n) a) n)]))

Assuming that m € {0,...,n — 1} and e € {0,...,n — 1}, let T1(e) be the number of multi-
plications needed to compute (mod-expl a e n) on any legal input. Give an explicit formula
for T (e).

The second function was more clever and is sometimes referred to as “repeated squaring” or
“square and multiply”:

(define (mod-exp?2 a e n)
(cond
[(zero? e) 1]
[(even? e) (modulo (mod-exp2 (sqr a) (quotient e 2) n) n)]
[else (modulo ( % (mod-exp2 (sqr a) (quotient e 2) n) a) n)]))

Let Ts(e) be the number of modular reductions (i.e., uses of the function modulo) needed
to compute (mod-exp2 a e n). Describe Th(e) by a recurrence relation, indicating what the
different cases are. Give an estimate for T5(e) in O-notation.

Hint. Assume that 2071 < e < 2¢, What is the cost of the algorithm in terms of /7 What is
the relationship between ¢ and n?

. Bonus. Prove the following statement by induction on n: if T'(n) has the property that 7'(0)
is O(1) and T'(n) < 3T(|n/3]) + f(n), where f(n) is a function from N — N which is O(n),
then T'(n) is O(nlogn). Here |n/3] is the floor of n/3, the largest integer which is less than
or equal to n/3 (i.e., n/3 rounded down to the nearest integer).



