
CS 136 Fall 2008
Mark Giesbrecht

Assignment 2
Due Tuesday, October 7, 2008 at 4pm.

For the Scheme questions you must use the module language. Please follow the CS
135 guide for coding and commenting.

1. Write code to bind the identifiers bidi and anarchy to the cons structures shown in the
following box-and-pointer diagrams. Create your structures using mcons cells.

(a)

1 2

bidi

3 4

(b)

anarchy

'A

Put your code in a file named a2q1-bidianarchy.ss for submission.

If you attempt to print your structures in the REPL, they will print using “shared” notation,
which resembles local without the keyword define, and is described in Section 44 of the
MzLib manual, available in Help Desk.

2. The first of the examples in the question above (bidi) is an example of a doubly-linked list.
From any cell on the top layer, you can get to the previous cell and to the next cell on the
top layer, as well as accessing a data element (in this case a number 1, 2, 3, or 4). In this
question you are to write some functions to support doubly-linked lists.

(a) The function list->dlist consumes a usual scheme list and produces a doubly linked list.
For example, (list->dlist ’(1 2 3 4)) would produce a structure equal to bidi above.

1



(b) The function dlist->list consumes a doubly linked list and produces a normal scheme
list. For example, (dlist->list bidi) would produce (1 2 3 4).

(c) The function ddata consumes a doubly-linked list and produces the data element asso-
ciated with the head of the list. For example, (ddata bidi) produces 1.

(d) The function dnext consumes a doubly linked list and produces the “next” cell in the
list, or empty if there is no next cell. For example, (ddata (dnext bidi)) produces 2;
(ddata (dnext (dnext bidi))) produces 3, etc.

(e) The function dprev consumes a doubly linked list and produces the “previous” cell in
the list, or empty if there is no previous cell. For example, (dprev bidi) produces empty ;
(ddata (dprev (dnext bidi))) produces 1, etc.

(f) The function dlength consumes a doubly linked list and produces the length of the list.
This is the number of cells both previous to and after the consumed cell. For example,

(define bidi3 (dnext (dnext bidi)))
(dlength bidi); ⇒ 4
(dlength bidi3 ); ⇒ 4

Put all your code in a file named a2q2-dlist.ss for submission.

3. Write the function invert! , which consumes an a mutable list (of mutable mcons cells) and
reverses it using set-mcdr! to mutate pointers so that no new space is used (that is, the code
does not use mcons). Here is an example of its use.

5 4 2

5 4 2

my-list

(define my-list2 (invert! my-list))

my-list
my-list2

(define my-list (mlist 5 4 2))

Put your code in a file named a2q3-invert.ss for submission.

4. Write a function remove-dupes! which consumes a mutable list ml , and produces a list in
which all but one of any duplicate elements have been removed. The original list is mutated
to contain no duplicate elements. Your function must not create any new mcons (or cons)
cells. For example,

(define mlst (mlist ’a ’b ’c ’a ’b ’d ’c))
mlst ; ⇒{a b c a b d c}
(remove-dupes! mlst)); ⇒{a b c d}
mlst ; ⇒{a b c d}

Put your code in a file named a2q4-remdupes.ss for submission.

2



5. A mutable list is cycle-free if, for some natural number n, the result of applying mcdr to
the list n times is empty . The following code, when evaluated, produces a list that is not
cycle-free.

(define mlst (mlist 3 5 4))
(set-mcdr! (mcdr (mcdr mlst)))

If you draw the box-and-pointer diagram of the result, it has a “cycle” in it, as the cdr of the
last mcons box points to the first one. This is not the only way a list can fail to be cycle-free.

Write a function cycle-free? that consumes an mutable list and produces #t if it is cycle-free,
and #f otherwise. For full credit, your function must terminate on all lists and be reasonably
efficient. For extra credit, it must use constant space (regardless of the size of the list) and
run in time proportional to the number of unique mcons cells on the list.

Put your code in a file named a2q5-cyclefree.ss for submission.

6. On the Assignments part of the course Web page, you will find the program a2q6-trivial.c.
Download it, compile it using the command gcc a2q6-trivial.c -o a2q6-trivial and
submit the resulting executable called a2q6-trivial (or a2q6-trivial.exe on Windows).
Also prepare a text file a2q6-survey.txt in which you describe the computer, environment,
and text editor you used (for example, “MacBookPro, Terminal, Vim” or “Windows, Cygwin,
Nano”), and submit that as well .

3


